Americas
Europe
Q1E
Expert-verifiedIn Exercises 1-6, determine if the set of points is affinely dependent. (See Practice Problem 2.) If so, construct an affine dependence relation for the points.
1.\(\left( {\begin{aligned}{{}}3\\{ - 3}\end{aligned}} \right),\left( {\begin{aligned}{{}}0\\6\end{aligned}} \right),\left( {\begin{aligned}{{}}2\\0\end{aligned}} \right)\)
The set of points is affinely dependent, and the relation is \(2{{\mathop{\rm v}\nolimits} _1} + {{\mathop{\rm v}\nolimits} _2} - 3{{\mathop{\rm v}\nolimits} _3} = 0\).
The set is said to be affinely dependent, if the set \(\left\{ {{{\bf{v}}_{\bf{1}}},{{\bf{v}}_{\bf{2}}},...,{{\bf{v}}_p}} \right\}\) in the dimension\({\mathbb{R}^n}\) exists such that \({c_1},{c_2},...,{c_p}\) not all zero, and the sum must be zero \({c_1} + {c_2} + ... + {c_p} = 0\), and \({c_1}{{\bf{v}}_1} + {c_2}{{\bf{v}}_2} + ... + {c_p}{{\bf{v}}_p} = 0\).
Let \({{\mathop{\rm v}\nolimits} _1} = \left( {\begin{aligned}{{}}3\\{ - 3}\end{aligned}} \right),{{\mathop{\rm v}\nolimits} _2} = \left( {\begin{aligned}{{}}0\\6\end{aligned}} \right),{{\mathop{\rm v}\nolimits} _3} = \left( {\begin{aligned}{{}}2\\0\end{aligned}} \right)\).
Compute translated points \({{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1}\) and \({{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _1}\)as shown below:
\({{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1} = \left( {\begin{aligned}{{}}{ - 3}\\9\end{aligned}} \right)\),
\({{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _1} = \left( {\begin{aligned}{{}}{ - 1}\\3\end{aligned}} \right)\)
It is observed that two points are multiples of each other.
Theorem 5 states that an indexed set \(S = \left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}\) in \({\mathbb{R}^n}\), with \(p \ge 2\), the following statement is equivalent. This means that either all the statements are true or all the statements are false.
Since two points are multiples of each other hence form a linearly dependent set.
Therefore, all statements in theorem 5 are true and thus \(S\) are affinely dependent.
\(\begin{aligned}{}{{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1} = 3\left( {{{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _1}} \right)\\{{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1} = 3{{\mathop{\rm v}\nolimits} _3} - 3{{\mathop{\rm v}\nolimits} _1}\\2{{\mathop{\rm v}\nolimits} _1} + {{\mathop{\rm v}\nolimits} _2} - 3{{\mathop{\rm v}\nolimits} _3} = 0\end{aligned}\)
Thus, the set of points is affinely dependent and \(2{{\mathop{\rm v}\nolimits} _1} + {{\mathop{\rm v}\nolimits} _2} - 3{{\mathop{\rm v}\nolimits} _3} = 0\).
94% of StudySmarter users get better grades.
Sign up for free