• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q1E

Expert-verified
Linear Algebra and its Applications
Found in: Page 437
Linear Algebra and its Applications

Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

In Exercises 1-6, determine if the set of points is affinely dependent. (See Practice Problem 2.) If so, construct an affine dependence relation for the points.

1.\(\left( {\begin{aligned}{{}}3\\{ - 3}\end{aligned}} \right),\left( {\begin{aligned}{{}}0\\6\end{aligned}} \right),\left( {\begin{aligned}{{}}2\\0\end{aligned}} \right)\)

The set of points is affinely dependent, and the relation is \(2{{\mathop{\rm v}\nolimits} _1} + {{\mathop{\rm v}\nolimits} _2} - 3{{\mathop{\rm v}\nolimits} _3} = 0\).

See the step by step solution

Step by Step Solution

Step 1: Condition for affinely dependent

The set is said to be affinely dependent, if the set \(\left\{ {{{\bf{v}}_{\bf{1}}},{{\bf{v}}_{\bf{2}}},...,{{\bf{v}}_p}} \right\}\) in the dimension\({\mathbb{R}^n}\) exists such that \({c_1},{c_2},...,{c_p}\) not all zero, and the sum must be zero \({c_1} + {c_2} + ... + {c_p} = 0\), and \({c_1}{{\bf{v}}_1} + {c_2}{{\bf{v}}_2} + ... + {c_p}{{\bf{v}}_p} = 0\).

Step 2:Compute \({{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1}\) and \({{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _1}\)

Let \({{\mathop{\rm v}\nolimits} _1} = \left( {\begin{aligned}{{}}3\\{ - 3}\end{aligned}} \right),{{\mathop{\rm v}\nolimits} _2} = \left( {\begin{aligned}{{}}0\\6\end{aligned}} \right),{{\mathop{\rm v}\nolimits} _3} = \left( {\begin{aligned}{{}}2\\0\end{aligned}} \right)\).

Compute translated points \({{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1}\) and \({{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _1}\)as shown below:

\({{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1} = \left( {\begin{aligned}{{}}{ - 3}\\9\end{aligned}} \right)\),

\({{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _1} = \left( {\begin{aligned}{{}}{ - 1}\\3\end{aligned}} \right)\)

It is observed that two points are multiples of each other.

Step 3: Determine whether the set of points is affinely dependent

Theorem 5 states that an indexed set \(S = \left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}\) in \({\mathbb{R}^n}\), with \(p \ge 2\), the following statement is equivalent. This means that either all the statements are true or all the statements are false.

  1. The set \(S\) is affinely dependent.
  2. Each of the points in \(S\) is an affine combination of the other points in \(S\).
  3. In \({\mathbb{R}^n}\), the set \(\left\{ {{{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p} - {{\mathop{\rm v}\nolimits} _1}} \right\}\)is linearly dependent.
  4. The set \(\left\{ {{{\bar v}_1},...,{{\bar v}_p}} \right\}\) of homogeneous forms in \({\mathbb{R}^{n + 1}}\) is linearly dependent.

Since two points are multiples of each other hence form a linearly dependent set.

Therefore, all statements in theorem 5 are true and thus \(S\) are affinely dependent.

\(\begin{aligned}{}{{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1} = 3\left( {{{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _1}} \right)\\{{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1} = 3{{\mathop{\rm v}\nolimits} _3} - 3{{\mathop{\rm v}\nolimits} _1}\\2{{\mathop{\rm v}\nolimits} _1} + {{\mathop{\rm v}\nolimits} _2} - 3{{\mathop{\rm v}\nolimits} _3} = 0\end{aligned}\)

Thus, the set of points is affinely dependent and \(2{{\mathop{\rm v}\nolimits} _1} + {{\mathop{\rm v}\nolimits} _2} - 3{{\mathop{\rm v}\nolimits} _3} = 0\).

Most popular questions for Math Textbooks

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.