• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q3E

Expert-verified
Linear Algebra and its Applications
Found in: Page 437
Linear Algebra and its Applications

Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Question: In Exercise 3, determine whether each set is open or closed or neither open nor closed.

3. a. \(\left\{ {\left( {x,y} \right):y > {\bf{0}}} \right\}\)

b. \(\left\{ {\left( {x,y} \right):x = {\bf{2}}\,\,\,and\,\,{\bf{1}} \le y \le {\bf{3}}} \right\}\)

c. \(\left\{ {\left( {x,y} \right):x = {\bf{2}}\,\,\,and\,\,{\bf{1}} < y < {\bf{3}}} \right\}\)

d. \(\left\{ {\left( {x,y} \right):xy = {\bf{1}}\,\,\,and\,\,x > {\bf{0}}} \right\}\)

e. \(\left\{ {\left( {x,y} \right):xy \ge {\bf{1}}\,\,\,and\,\,x > {\bf{0}}} \right\}\)

  1. Open
  2. Closed
  3. Neither open nor closed
  4. Closed
  5. Closed
See the step by step solution

Step by Step Solution

Step 1: To check every point is an interior point

(a)

Consider the set \(\left( {x,y} \right) \in \left\{ {\left( {x,y} \right):y > 0} \right\}\). Choose \(\delta = y\). To check that \(B\left( {\left( {x,y} \right),\delta } \right)\) is wholly contained in \(\left\{ {\left( {x,y} \right):y > 0} \right\}\) or not.

Let \((a,b) \in B\left( {\left( {x,y} \right),\delta } \right)\). Then

\(\begin{array}{l}\sqrt {{{\left( {a - x} \right)}^2} + {{\left( {b - y} \right)}^2}} < \delta \\\sqrt {{{\left( {a - x} \right)}^2} + {{\left( {b - y} \right)}^2}} < y\\\,\,\,\,{\left( {a - x} \right)^2} + {\left( {b - y} \right)^2} < {y^2}\\ \Rightarrow \,\,\,\,\,\,\,\,\,\,\,\,\,0 < {\left( {b - y} \right)^2} < {y^2}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0 < b - y < y\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0 < b < 2y\end{array}\)

This implies \(\left( {a,b} \right) \in \left\{ {\left( {x,y} \right):y > 0} \right\}\). Hence, \(B\left( {\left( {x,y} \right),\delta } \right)\) is wholly contained in \(\left\{ {\left( {x,y} \right):y > 0} \right\}\).

Thus \(\left\{ {\left( {x,y} \right):y > 0} \right\}\) is open.

Step 2: To check every point is a boundary point

(b)

Consider \(\left( {2,3} \right) \in \left\{ {\left( {x,y} \right):x = 2\,\,{\rm{and}}\,\,1 \le y \le 3} \right\}\). Choose \(\delta = \frac{1}{n}\), \(n \in \mathbb{N}\).

Let \((2 - \varepsilon ,3 - \varepsilon ) \notin \left\{ {\left( {x,y} \right):x = 2\,\,{\rm{and}}\,\,1 \le y \le 3} \right\}\) where \(\varepsilon = \frac{1}{k}\) when \(k \to \infty \). Note that

\(\begin{array}{c}\sqrt {{{\left( {2 - \varepsilon - 2} \right)}^2} + {{\left( {3 - \varepsilon - 3} \right)}^2}} < \sqrt {{\varepsilon ^2} + {\varepsilon ^2}} \\ < \sqrt {2{\varepsilon ^2}} \\ < \sqrt 2 \varepsilon \\ < \delta \end{array}\)

This implies \((2 - \varepsilon ,3 - \varepsilon ) \in B\left( {\left( {2,3} \right),\delta } \right)\). Thus \(\left( {2,3} \right)\) is a boundary point of \(\left\{ {\left( {x,y} \right):x = 2\,\,{\rm{and}}\,\,1 \le y \le 3} \right\}\).

Hence \(\left\{ {\left( {x,y} \right):x = 2\,\,{\rm{and}}\,\,1 \le y \le 3} \right\}\) is closed.

Step 3: Use the proper definition of open and closed

(c)

Consider \(\left( {2,1 + \varepsilon } \right) \in \left\{ {\left( {x,y} \right):x = 2\,\,{\rm{and}}\,\,1 < y < 3} \right\}\) where \(\varepsilon = \frac{1}{k}\) when \(k \to \infty \). Choose \(\delta = \frac{1}{n}\), \(n \in \mathbb{N}\). To check that \(B\left( {\left( {2,1 + \varepsilon } \right),\delta } \right)\) is completely contained in \(\left\{ {\left( {x,y} \right):x = 2\,\,{\rm{and}}\,\,1 < y < 3} \right\}\) or not.

Let \(\left( {2 + \varepsilon ,1 + \varepsilon } \right) \in {\mathbb{R}^2}\). Then

\(\begin{array}{c}\left\| {\left( {2 + \varepsilon ,1 + \varepsilon } \right) - \left( {2,1 + \varepsilon } \right)} \right\| = \sqrt {{{\left( {2 + \varepsilon - 2} \right)}^2} + {{\left( {1 + \varepsilon - \left( {1 + \varepsilon } \right)} \right)}^2}} \\ < \sqrt {{\varepsilon ^2} + 0} \\ < \varepsilon \\ < \delta \end{array}\)

This implies \(\left( {2 + \varepsilon ,1 + \varepsilon } \right) \in B\left( {\left( {2,1 + \varepsilon } \right),\delta } \right)\). But \(\left( {2 + \varepsilon ,1 + \varepsilon } \right) \notin \left\{ {\left( {x,y} \right):x = 2\,\,{\rm{and}}\,\,1 < y < 3} \right\}\).

Thus \(\left\{ {\left( {x,y} \right):x = 2\,\,{\rm{and}}\,\,1 < y < 3} \right\}\) is not open.

Consider \(\left( {2,1} \right) \notin \left\{ {\left( {x,y} \right):x = 2\,\,{\rm{and}}\,\,1 < y < 3} \right\}\). Choose \(\delta = \frac{1}{n}\), \(n \in \mathbb{N}\). To check that \(B\left( {\left( {2,1} \right),\delta } \right)\) contains a point of \(\left\{ {\left( {x,y} \right):x = 2\,\,{\rm{and}}\,\,1 < y < 3} \right\}\) or not.

Let \(\left( {2,1 + \varepsilon } \right) \in {\mathbb{R}^2}\) where \(\varepsilon = \frac{1}{k}\) when \(k \to \infty \). Then

\(\begin{array}{c}\left\| {\left( {2,1 + \varepsilon } \right) - \left( {2,1} \right)} \right\| = \sqrt {{{\left( {2 - 2} \right)}^2} + {{\left( {1 + \varepsilon - 1} \right)}^2}} \\ < \sqrt {0 + {\varepsilon ^2}} \\ < \varepsilon \\ < \delta \end{array}\)

This implies \(\left( {2,1 + \varepsilon } \right) \in B\left( {\left( {2,1} \right),\delta } \right)\) and also in \(\left\{ {\left( {x,y} \right):x = 2\,\,{\rm{and}}\,\,1 < y < 3} \right\}\).Hence \(\left( {2,1} \right)\) is a boundary point of \(\left\{ {\left( {x,y} \right):x = 2\,\,{\rm{and}}\,\,1 < y < 3} \right\}\). But \(\left( {2,1} \right) \notin \left\{ {\left( {x,y} \right):x = 2\,\,{\rm{and}}\,\,1 < y < 3} \right\}\).

Thus \(\left\{ {\left( {x,y} \right):x = 2\,\,{\rm{and}}\,\,1 < y < 3} \right\}\) is not closed.

Therefore \(\left\{ {\left( {x,y} \right):x = 2\,\,{\rm{and}}\,\,1 < y < 3} \right\}\) is neither open nor closed.

Step 4: To check every point is a boundary point

(d)

The given set \(\left\{ {\left( {x,y} \right):xy = 1\,\,{\rm{and}}\,\,x > 0} \right\}\) can be written as \(\left\{ {\left( {x,y} \right):\,\,x > 0\,{\rm{and}}\,y > 0\,{\rm{such}}\,{\rm{that }}xy = 1} \right\} = \left\{ {\left( {\frac{p}{q},\frac{q}{p}} \right):\,\,p,q \in \mathbb{N}} \right\}\).

Let \(\left( {\frac{p}{q},\frac{q}{p}} \right) \in \left\{ {\left( {\frac{p}{q},\frac{q}{p}} \right):\,\,p,q \in \mathbb{N}} \right\}\). Choose \(\delta = \frac{1}{n}\), \(n \in \mathbb{N}\). We know that every\(B\left( {\left( {\frac{p}{q},\frac{q}{p}} \right),\delta } \right)\) contains at least an irrational point.

This implies every point in \(\left( {\frac{p}{q},\frac{q}{p}} \right) \in \left\{ {\left( {\frac{p}{q},\frac{q}{p}} \right):\,\,p,q \in \mathbb{N}} \right\}\) is the boundary point. Hence \(\left( {\frac{p}{q},\frac{q}{p}} \right) \in \left\{ {\left( {\frac{p}{q},\frac{q}{p}} \right):\,\,p,q \in \mathbb{N}} \right\}\) is closed.

That is \(\left\{ {\left( {x,y} \right):xy = 1\,\,{\rm{and}}\,\,x > 0} \right\}\) closed.

Step 5: To check every point is a boundary point

(e)

Let \(\left( {x,\frac{1}{x}} \right) \in \left\{ {\left( {x,y} \right):xy \ge 1\,\,{\rm{and}}\,\,x > 0} \right\}\). Choose \(\delta = \frac{1}{n}\), \(n \in \mathbb{N}\).

Let \((x,\frac{1}{x} - \varepsilon ) \notin \left\{ {\left( {x,y} \right):xy \ge 1\,\,{\rm{and}}\,\,x > 0} \right\}\) where \(\varepsilon = \frac{1}{k}\) when \(k \to \infty \). Note that:

\(\begin{array}{c}\sqrt {{{\left( {x - x} \right)}^2} + {{\left( {\frac{1}{x} - \varepsilon - \frac{1}{x}} \right)}^2}} < \sqrt {{\varepsilon ^2}} \\ < \varepsilon \\ < \delta \end{array}\)

This implies \((x,\frac{1}{x} - \varepsilon ) \in B\left( {\left( {x,\frac{1}{x}} \right),\delta } \right)\). Thus \(\left( {x,\frac{1}{x}} \right)\) is a boundary point of\(\left\{ {\left( {x,y} \right):xy \ge 1\,\,{\rm{and}}\,\,x > 0} \right\}\).

Hence, \(\left\{ {\left( {x,y} \right):xy \ge 1\,\,{\rm{and}}\,\,x > 0} \right\}\) is closed.

Most popular questions for Math Textbooks

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.