• :00Days
• :00Hours
• :00Mins
• 00Seconds
A new era for learning is coming soon Suggested languages for you:

Europe

Answers without the blur. Sign up and see all textbooks for free! Q7E

Expert-verified Found in: Page 437 ### Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384 # Question: In Exercise 7, let H be the hyperplane through the listed points. (a) Find a vector n that is normal to the hyperplane. (b) Find a linear functional f and a real number d such that $$H = \left( {f:d} \right)$$.7. $$\left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{1}}\\{\bf{3}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{4}}\\{\bf{1}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{ - {\bf{1}}}\\{ - {\bf{2}}}\\{\bf{5}}\end{array}} \right)$$

1. The normal vector is $$n = \left( {\begin{array}{*{20}{c}}0\\2\\3\end{array}} \right)$$ or a multiple
2. The linear function is $$f\left( x \right) = 2{x_2} + 3{x_3}$$ , and the real number is $$d = 11$$.
See the step by step solution

## Step 1: Write the given data

Let $${v_1} = \left( {\begin{array}{*{20}{c}}1\\1\\3\end{array}} \right)$$, $${v_2} = \left( {\begin{array}{*{20}{c}}2\\4\\1\end{array}} \right)$$, and $${v_3} = \left( {\begin{array}{*{20}{c}}{ - 1}\\{ - 2}\\5\end{array}} \right)$$.

Then, $${v_2} - {v_1} = \left( {\begin{array}{*{20}{c}}1\\3\\{ - 2}\end{array}} \right),$$ and $${v_3} - {v_1} = \left( {\begin{array}{*{20}{c}}{ - 2}\\{ - 3}\\2\end{array}} \right)$$.

## Step 2: Use the cross product to compute n

(a)

$$\begin{array}{c}n = \left( {{v_2} - {v_1}} \right) \times \left( {{v_3} - {v_1}} \right)\\ = \left| {\begin{array}{*{20}{c}}1&{ - 2}&i\\3&{ - 3}&j\\{ - 2}&2&k\end{array}} \right|\\ = \left| {\begin{array}{*{20}{c}}3&{ - 3}\\{ - 2}&2\end{array}} \right|i - \left| {\begin{array}{*{20}{c}}1&{ - 2}\\{ - 2}&2\end{array}} \right|j + \left| {\begin{array}{*{20}{c}}1&{ - 2}\\3&{ - 3}\end{array}} \right|k\\ = 0i + 2j + 3k\end{array}$$

Thus, the normal vector is $$n = \left( {\begin{array}{*{20}{c}}0\\2\\3\end{array}} \right)$$.

## Step 3: Find a linear functional f and a real number d

(b)

Using part (a) to obtain the linear functional f as shown below:

$$\begin{array}{c}f\left( x \right) = n \cdot x\\ = \left( {\begin{array}{*{20}{c}}0&2&3\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right)\\f\left( x \right) = 2{x_2} + 3{x_3}\end{array}$$

Note that, $${v_i}$$ in $$H = \left( {f:d} \right)$$ such that, $$f\left( {{v_i}} \right) = d$$ for $$i = 1,2,3$$.

$$\begin{array}{c}d = f\left( {{v_1}} \right)\\ = f\left( {1,1,3} \right)\\ = 2\left( 1 \right) + 3\left( 3 \right)\\ = 2 + 9\\d = 11\end{array}$$

Thus, the linear function is $$f\left( x \right) = 2{x_2} + 3{x_3}$$ , and the real number is $$d = 11$$. ### Want to see more solutions like these? 