Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q8E

Expert-verified
Linear Algebra and its Applications
Found in: Page 437
Linear Algebra and its Applications

Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

In Exercises 7 and 8, find the barycentric coordinates of p with respect to the affinely independent set of points that precedes it.

8. \(\left( {\begin{array}{{}}0\\1\\{ - 2}\\1\end{array}} \right),\left( {\begin{array}{{}}1\\1\\0\\2\end{array}} \right),\left( {\begin{array}{{}}1\\4\\{ - 6}\\5\end{array}} \right)\), \({\mathop{\rm p}\nolimits} = \left( {\begin{array}{{}}{ - 1}\\1\\{ - 4}\\0\end{array}} \right)\)

The barycentric coordinates are \(\left( {2, - 1,0} \right)\).

See the step by step solution

Step by Step Solution

Step 1: The barycentric coordinates

Consider the set \(S = \left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},...,{{\mathop{\rm v}\nolimits} _k}} \right\}\)as an affinely independent. So, for every point \({\mathop{\rm p}\nolimits} \) in \({\mathop{\rm aff}\nolimits} S\), the coefficients \({c_1},...,{c_k}\) in the unique representation (7) of \({\mathop{\rm p}\nolimits} \) are referred to as barycentric coordinates (or sometimes, affine) of \({\mathop{\rm p}\nolimits} \).

Step 2: Write the augmented matrix 

Move the last row of ones to the top to simplify the arithmetic.

Write the augmented matrix as shown below:

\(\left( {\begin{array}{{}}{\widetilde {{{\bf{v}}_1}}}&{\widetilde {{{\bf{v}}_2}}}&{\widetilde {{{\bf{v}}_3}}}&{\widetilde {\bf{p}}}\end{array}} \right) \sim \left( {\begin{array}{{}}0&1&1&{ - 1}\\1&1&4&1\\{ - 2}&0&{ - 6}&{ - 4}\\1&2&5&0\\1&1&1&1\end{array}} \right)\)

Step 3: Apply row operations

Interchange row 1 and row 2.

\( \sim \left( {\begin{array}{{}}1&1&4&1\\0&1&1&{ - 1}\\{ - 2}&0&{ - 6}&{ - 4}\\1&2&5&0\\1&1&1&1\end{array}} \right)\)

At row 3, multiply row 1 by 2 and add it to row 3.

\( \sim \left( {\begin{array}{{}}1&1&4&1\\0&1&1&{ - 1}\\0&2&2&{ - 2}\\1&2&5&0\\1&1&1&1\end{array}} \right)\)

At row 4, subtract row 1 from row 4. At row 5, subtract row 1 from row 5. At row 1, subtract row 2 from row 1.

\( \sim \left( {\begin{array}{{}}1&0&3&2\\0&1&1&{ - 1}\\0&2&2&{ - 2}\\0&1&1&{ - 1}\\0&0&{ - 3}&0\end{array}} \right)\)

At row 3, multiply row 2 by 2 and subtract it from row 3.

\( \sim \left( {\begin{array}{{}}1&0&3&2\\0&1&1&{ - 1}\\0&0&0&0\\0&1&1&{ - 1}\\0&0&{ - 3}&0\end{array}} \right)\)

At row 4, subtract row 2 from row 4.

\( \sim \left( {\begin{array}{{}}1&0&3&2\\0&1&1&{ - 1}\\0&0&0&0\\0&0&0&0\\0&0&{ - 3}&0\end{array}} \right)\)

Interchange row 3 and row 5.

\( \sim \left( {\begin{array}{{}}1&0&3&2\\0&1&1&{ - 1}\\0&0&{ - 3}&0\\0&0&0&0\\0&0&0&0\end{array}} \right)\)

At row 1, multiply row 3 by 3 and subtract it from row 1.

\( \sim \left( {\begin{array}{{}}1&0&3&2\\0&1&1&{ - 1}\\0&0&1&0\\0&0&0&0\\0&0&0&0\end{array}} \right)\)

Step 4: Determine the barycentric coordinates of p

Convert the matrix into the system of equations as shown below

\(\begin{array}{}{{\mathop{\rm x}\nolimits} _1} + 3{{\mathop{\rm x}\nolimits} _3} = 2\\{{\mathop{\rm x}\nolimits} _2} + {{\mathop{\rm x}\nolimits} _3} = - 1\\{{\mathop{\rm x}\nolimits} _3} = 0\end{array}\)

Solve the system of the equation to obtain as shown below

\({{\mathop{\rm x}\nolimits} _1} = 2,{\rm{ }}{{\mathop{\rm x}\nolimits} _2} = - 1,{\rm{ }}{{\mathop{\rm x}\nolimits} _3} = 0\)

The coordinates are \(2, - 1,\,\,\,{\mathop{\rm and}\nolimits} \,\,0\), so \({\bf{p}} = 2{{\bf{v}}_1} - {{\bf{v}}_2} + 0{{\bf{v}}_3}\).

Thus, the barycentric coordinates are \(\left( {2, - 1,0} \right)\).

Most popular questions for Math Textbooks

In Exercises 9 and 10, mark each statement True or False. Justify each answer.

10.a. If \(\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}\) is an affinely dependent set in \({\mathbb{R}^n}\), then the set \(\left\{ {{{\overline {\mathop{\rm v}\nolimits} }_1},...,{{\overline {\mathop{\rm v}\nolimits} }_p}} \right\}\) in \({\mathbb{R}^{n + 1}}\) of homogeneous forms may be linearly independent.

b. If \({{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}\) and \({{\mathop{\rm v}\nolimits} _4}\) are in \({\mathbb{R}^3}\) and if the set \(\left\{ {{{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _4} - {{\mathop{\rm v}\nolimits} _1}} \right\}\) is linearly independent, then \(\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _4}} \right\}\) is affinely independent.

c. Given \(S = \left\{ {{{\mathop{\rm b}\nolimits} _1},...,{{\mathop{\rm b}\nolimits} _k}} \right\}\) in \({\mathbb{R}^n}\), each \({\bf{p}}\) in\({\mathop{\rm aff}\nolimits} S\) has a unique representation as an affine combination of \({{\mathop{\rm b}\nolimits} _1},...,{{\mathop{\rm b}\nolimits} _k}\).

d. When color information is specified at each vertex \({{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}\) of a triangle in \({\mathbb{R}^3}\), then the color may be interpolated at a point p in \({\mathop{\rm aff}\nolimits} \left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _4}} \right\}\) using the barycentric coordinates of p.

e. If T is a triangle in \({\mathbb{R}^2}\) and if a point p is on edge of the triangle, then the barycentric coordinates of p (for this triangle) are not all positive.

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.