Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q8E

Expert-verified
Linear Algebra and its Applications
Found in: Page 437
Linear Algebra and its Applications

Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Question: In Exercise 8, let H be the hyperplane through the listed points. (a) Find a vector n that is normal to the hyperplane. (b) Find a linear functional f and a real number d such that \(H = \left( {f:d} \right)\).

8. \(\left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{2}}}\\{\bf{1}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{\bf{4}}\\{ - {\bf{2}}}\\{\bf{3}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{\bf{7}}\\{ - {\bf{4}}}\\{\bf{4}}\end{array}} \right)\)

  1. The normal vector is \(n = \left( {\begin{array}{*{20}{c}}4\\3\\{ - 6}\end{array}} \right)\) or a multiple
  2. The linear functional is \(f\left( x \right) = 4{x_1} + 3{x_2} - 6{x_3}\) , and the real number is \(d = - 8\).
See the step by step solution

Step by Step Solution

Step 1: Write the given data

Let \({v_1} = \left( {\begin{array}{*{20}{c}}1\\{ - 2}\\1\end{array}} \right)\), \({v_2} = \left( {\begin{array}{*{20}{c}}4\\{ - 2}\\3\end{array}} \right)\), and \({v_3} = \left( {\begin{array}{*{20}{c}}7\\{ - 4}\\4\end{array}} \right)\).

Then, the vectors are \({v_2} - {v_1} = \left( {\begin{array}{*{20}{c}}3\\0\\2\end{array}} \right),\) and \({v_3} - {v_1} = \left( {\begin{array}{*{20}{c}}6\\{ - 2}\\3\end{array}} \right)\).

Step 2: Use the cross product to compute n

(a)

\(\begin{array}{c}n = \left( {{v_2} - {v_1}} \right) \times \left( {{v_3} - {v_1}} \right)\\ = \left| {\begin{array}{*{20}{c}}3&6&i\\0&{ - 2}&j\\2&3&k\end{array}} \right|\\ = \left| {\begin{array}{*{20}{c}}0&{ - 2}\\2&3\end{array}} \right|i - \left| {\begin{array}{*{20}{c}}3&6\\2&3\end{array}} \right|j + \left| {\begin{array}{*{20}{c}}3&6\\0&{ - 2}\end{array}} \right|k\\ = 4i + 3j - 6k\end{array}\)

Thus, the normal vector is \(n = \left( {\begin{array}{*{20}{c}}4\\3\\{ - 6}\end{array}} \right)\).

Step 3: Find a linear functional f and a real number d

(b)

Using part (a), the linear functional f can be obtained as shown below:

\(\begin{array}{c}f\left( x \right) = n \cdot x\\ = \left[ {\begin{array}{*{20}{c}}4&3&{ - 6}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right)\\f\left( x \right) = 4{x_1} + 3{x_2} - 6{x_3}\end{array}\)

Note that, \({v_i}\) in \(H = \left( {f:d} \right)\) such that \(f\left( {{v_i}} \right) = d\) for \(i = 1,2,3\).

\(\begin{array}{c}d = f\left( {{v_1}} \right)\\ = f\left( {1, - 2,1} \right)\\ = 4\left( 1 \right) + 3\left( { - 2} \right) - 6\left( 1 \right)\\ = 4 - 6 - 6\\d = - 8\end{array}\)

Thus, the linear function is \(f\left( x \right) = 4{x_1} + 3{x_2} - 6{x_3}\) , and the real number is \(d = - 8\).

Most popular questions for Math Textbooks

Let \({v_1} = \left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{1}}\end{array}} \right]\), \({v_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{5}}\end{array}} \right]\), \({v_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}{\bf{4}}\\{\bf{3}}\end{array}} \right]\), \({p_1} = \left[ {\begin{array}{*{20}{c}}{\bf{3}}\\{\bf{5}}\end{array}} \right]\), \({p_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{\bf{5}}\\{\bf{1}}\end{array}} \right]\), \({p_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{3}}\end{array}} \right]\), \({p_{\bf{4}}} = \left[ {\begin{array}{*{20}{c}}{ - {\bf{1}}}\\{\bf{0}}\end{array}} \right]\), \({p_{\bf{5}}} = \left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{4}}\end{array}} \right]\), \({p_{\bf{6}}} = \left[ {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{2}}\end{array}} \right]\), \({p_{\bf{7}}} = \left[ {\begin{array}{*{20}{c}}{\bf{6}}\\{\bf{4}}\end{array}} \right]\) and let \(S = \left\{ {{v_1},{v_2},{v_3}} \right\}\).

  1. Show that the set is affinely independent.
  2. Find the barycentric coordinates of \({p_1}\), \({p_{\bf{2}}}\), and \({p_{\bf{3}}}\) with respect to S.
  3. On graph paper, sketch the triangle \(T\) with vertices \({v_1}\), \({v_{\bf{2}}}\), and \({v_{\bf{3}}}\), extend the sides as in Figure 8, and plot the points \({p_{\bf{4}}}\), \({p_{\bf{5}}}\), \({p_{\bf{6}}}\), and \({p_{\bf{7}}}\). Without calculating the actual values, determine the signs of the barycentric coordinates of points \({p_{\bf{4}}}\), \({p_{\bf{5}}}\), \({p_{\bf{6}}}\), and \({p_{\bf{7}}}\).
Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.