• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q12SE

Expert-verified
Linear Algebra and its Applications
Found in: Page 191
Linear Algebra and its Applications

Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Question: Exercises 12-17 develop properties of rank that are sometimes needed in applications. Assume the matrix \(A\) is \(m \times n\).

  1. Show that if \(B\) is \(n \times p\), then rank\(AB \le {\mathop{\rm rank}\nolimits} A\). (Hint: Explain why every vector in the column space of \(AB\) is in the column space of \(A\).
  2. Show that if \(B\) is \(n \times p\), then rank\(AB \le {\mathop{\rm rank}\nolimits} B\). (Hint: Use part (a) to study rank\({\left( {AB} \right)^T}\).)

  1. It is proved that \({\mathop{\rm rank}\nolimits} AB \le {\mathop{\rm rank}\nolimits} A\).
  2. It is proved that \({\mathop{\rm rank}\nolimits} AB \le {\mathop{\rm rank}\nolimits} B\).
See the step by step solution

Step by Step Solution

Step 1: Show that if \(B\) is \(n \times p\), then rank\(AB \le {\mathop{\rm rank}\nolimits} A\)

a)

According to the theorem 11 let \(H\) be a subspace of a finite-dimensional vector space \(V\), any linearly independent set can be expanded, if necessary, to a basis for \(H\). Also, \(H\) is finite-dimensional such that \(\dim H \le \dim V\).

Consider \({\mathop{\rm y}\nolimits} \) is in \({\mathop{\rm Col}\nolimits} AB\), then \({\mathop{\rm y}\nolimits} = AB\) for some \({\mathop{\rm x}\nolimits} \). However, as \(AB{\mathop{\rm x}\nolimits} = A\left( {B{\mathop{\rm x}\nolimits} } \right)\), \({\mathop{\rm y}\nolimits} = A\left( {B{\mathop{\rm x}\nolimits} } \right)\), and \({\mathop{\rm y}\nolimits} \) is in \({\mathop{\rm Col}\nolimits} A\). Therefore, \({\mathop{\rm Col}\nolimits} AB\) is a subspace of \({\mathop{\rm Col}\nolimits} A\), and \({\mathop{\rm rank}\nolimits} AB = \dim {\mathop{\rm Col}\nolimits} AB \le \dim {\mathop{\rm Col}\nolimits} A = {\mathop{\rm rank}\nolimits} A\) (according to theorem 11).

Thus, it is proved that \({\mathop{\rm rank}\nolimits} AB \le {\mathop{\rm rank}\nolimits} A\).

Step 2: Show that if \(B\) is \(n \times p\), then rank\(AB \le {\mathop{\rm rank}\nolimits} B\)

b)

The rank theorem states that the dimensions of the column space and the row space of a \(m \times n\) matrix \(A\) are equal. This common dimension (the rank of \(A\)) also equals the number of pivot positions in \(A\) and satisfies the equation \({\mathop{\rm rank}\nolimits} A + \dim {\mathop{\rm Nul}\nolimits} A = n\).

\(\begin{array}{c}{\mathop{\rm rank}\nolimits} AB = {\mathop{\rm rank}\nolimits} {\left( {AB} \right)^T}\\ = {\mathop{\rm rank}\nolimits} {B^T}{A^T}\\ \le {\mathop{\rm rank}\nolimits} {B^T}\\ = {\mathop{\rm rank}\nolimits} B\end{array}\)

Thus, it is proved that \({\mathop{\rm rank}\nolimits} AB \le {\mathop{\rm rank}\nolimits} B\).

Most popular questions for Math Textbooks

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.