• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q15E

Expert-verified
Linear Algebra and its Applications
Found in: Page 191
Linear Algebra and its Applications

Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

If A is a \({\bf{6}} \times {\bf{8}}\) matrix, what is the smallest possible dimension of Null A?

The smallest possible dimension of Null A is 2.

See the step by step solution

Step by Step Solution

Step 1: Describe the given data

From the given \(6 \times 8\) matrix, the number of pivots cannot exceed 6. That is

\({\rm{rank}}\,A \le 6\).

Step 2: Use the rank theorem

By the rank theorem, you get

\(\begin{aligned} n &= {\rm{rank}}\,A + \dim \,{\rm{Null}}\,A\\8 &\le 6 + \dim \,{\rm{Null}}\,A\\8 - 6 &\le \dim \,{\rm{Null}}\,A\\2 &\le \dim \,{\rm{Null}}\,A.\end{aligned}\)

Step 3: Draw a conclusion

Hence, the smallest possible dimension of Null A is 2.

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.