• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q38E

Expert-verified
Linear Algebra and its Applications
Found in: Page 191
Linear Algebra and its Applications

Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

(M) Determine whether w is in the column space of \(A\), the null space of \(A\), or both, where

\({\mathop{\rm w}\nolimits} = \left( {\begin{array}{*{20}{c}}1\\2\\1\\0\end{array}} \right),A = \left( {\begin{array}{*{20}{c}}{ - 8}&5&{ - 2}&0\\{ - 5}&2&1&{ - 2}\\{10}&{ - 8}&6&{ - 3}\\3&{ - 2}&1&0\end{array}} \right)\)

\({\mathop{\rm w}\nolimits} \) is in Col A, and w is in Nul A.

See the step by step solution

Step by Step Solution

Step 1: Write an augmented matrix

Consider the augmented matrix \(\left( {\begin{array}{*{20}{c}}A&{\mathop{\rm w}\nolimits} \end{array}} \right)\) as shown below:

\(\left( {\begin{array}{*{20}{c}}A&w\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{ - 8}&5&{ - 2}&0&1\\{ - 5}&2&1&{ - 2}&2\\{10}&{ - 8}&6&{ - 3}&1\\3&{ - 2}&1&0&0\end{array}} \right)\)

Step 2: Convert the matrix into row-reduced echelon form

Consider the matrix \(A = \left( {\begin{array}{*{20}{c}}{ - 8}&5&{ - 2}&0&1\\{ - 5}&2&1&{ - 2}&2\\{10}&{ - 8}&6&{ - 3}&1\\3&{ - 2}&1&0&0\end{array}} \right)\).

Use the code in MATLAB to obtain the row-reduced echelon form as shown below:

\(\begin{array}{l} > > {\mathop{\rm A}\nolimits} = \left( { - 8\,\,5\,\, - 2\,\,\,0\,\,\,1;\, - 5\,\,\,2\,\,\,1\,\,\, - 2\,\,\,2;\,10\,\,\, - 8\,\,\,6\,\,\, - 3\,\,\,1;\,3\,\,\, - 2\,\,\,1\,\,\,\,0\,\,\,0} \right)\\ > > {\mathop{\rm U}\nolimits} = {\mathop{\rm rref}\nolimits} \left( {\mathop{\rm A}\nolimits} \right)\end{array}\)

\(\left( {\begin{array}{*{20}{c}}{ - 8}&5&{ - 2}&0&1\\{ - 5}&2&1&{ - 2}&2\\{10}&{ - 8}&6&{ - 3}&1\\3&{ - 2}&1&0&0\end{array}} \right) \sim \left( {\begin{array}{*{20}{c}}1&0&{ - 1}&0&{ - 2}\\0&1&{ - 2}&0&{ - 3}\\0&0&1&1&1\\0&0&0&0&0\end{array}} \right)\)

Step 3: Determine whether w is in the column space of A

A typical vector v in Col A has the property that the equation \(A{\mathop{\rm x}\nolimits} = {\mathop{\rm v}\nolimits} \) is consistent.

The system of the equation of matrix A is consistent.

Thus, \({\mathop{\rm w}\nolimits} \) is in Col A.

Step 4: Determine whether w is in the Null space of A

A typical vector v in Nul A has the property that \(A{\mathop{\rm v}\nolimits} = 0\).

Use the code in the MATLAB to compute the matrix \({\mathop{\rm Aw}\nolimits} \) as shown below:

\(\begin{array}{l} > > {\mathop{\rm A}\nolimits} = \left( { - 8\,\,5\,\, - 2\,\,\,0;\, - 5\,\,\,2\,\,\,1\,\,\, - 2;\,10\,\,\, - 8\,\,\,6\,\,\, - 3;\,3\,\,\, - 2\,\,\,1\,\,\,\,0} \right)\\ > > {\mathop{\rm w}\nolimits} = \left( {1;\,\,2;\,\,1;\,\,\,0} \right)\\ > > {\mathop{\rm U}\nolimits} = {\mathop{\rm A}\nolimits} * w\end{array}\)

\(\begin{array}{c}{\mathop{\rm A}\nolimits} {\mathop{\rm w}\nolimits} = \left( {\begin{array}{*{20}{c}}{ - 8}&5&{ - 2}&0\\{ - 5}&2&1&{ - 2}\\{10}&{ - 8}&6&{ - 3}\\3&{ - 2}&1&0\end{array}} \right)\left( {\begin{array}{*{20}{c}}1\\2\\1\\0\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}0\\0\\0\\0\end{array}} \right)\end{array}\)

Thus, w is in Nul A.

Most popular questions for Math Textbooks

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.