Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q40E

Expert-verified
Linear Algebra and its Applications
Found in: Page 191
Linear Algebra and its Applications

Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

(M) Let \(H = {\mathop{\rm Span}\nolimits} \left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2}} \right\}\) and \(K = {\mathop{\rm Span}\nolimits} \left\{ {{{\mathop{\rm v}\nolimits} _3},{{\mathop{\rm v}\nolimits} _4}} \right\}\), where

\({{\mathop{\rm v}\nolimits} _1} = \left( {\begin{array}{*{20}{c}}5\\3\\8\end{array}} \right),{{\mathop{\rm v}\nolimits} _2} = \left( {\begin{array}{*{20}{c}}1\\3\\4\end{array}} \right),{{\mathop{\rm v}\nolimits} _3} = \left( {\begin{array}{*{20}{c}}2\\{ - 1}\\5\end{array}} \right),{{\mathop{\rm v}\nolimits} _4} = \left( {\begin{array}{*{20}{c}}0\\{ - 12}\\{ - 28}\end{array}} \right)\)

Then \(H\) and \(K\) are subspaces of \({\mathbb{R}^3}\). In fact, \(H\) and \(K\) are planes in \({\mathbb{R}^3}\) through the origin, and they intersect in a line through 0. Find a nonzero vector w that generates that line. (Hint: w can be written as \({c_1}{{\mathop{\rm v}\nolimits} _1} + {c_2}{{\mathop{\rm v}\nolimits} _2}\) and also as \({c_3}{{\mathop{\rm v}\nolimits} _3} + {c_4}{{\mathop{\rm v}\nolimits} _4}\). To build w, solve the equation \({c_1}{{\mathop{\rm v}\nolimits} _1} + {c_2}{{\mathop{\rm v}\nolimits} _2} = {c_3}{{\mathop{\rm v}\nolimits} _3} + {c_4}{{\mathop{\rm v}\nolimits} _4}\) for the unknown \({c_j}'{\mathop{\rm s}\nolimits} \).)

The nonzero vector w that generates that line is \(\left( {1, - 2, - 1} \right)\).

See the step by step solution

Step by Step Solution

Step 1: Write the augmented matrix

\({\mathop{\rm w}\nolimits} \) can be written as \({c_1}{{\mathop{\rm v}\nolimits} _1} + {c_2}{{\mathop{\rm v}\nolimits} _2}\) and \({c_3}{{\mathop{\rm v}\nolimits} _3} + {c_4}{{\mathop{\rm v}\nolimits} _4}\) because the line lies in both \(H = {\mathop{\rm Span}\nolimits} \left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2}} \right\}\) and \(K = {\mathop{\rm Span}\nolimits} \left\{ {{{\mathop{\rm v}\nolimits} _3},{{\mathop{\rm v}\nolimits} _4}} \right\}\). To determine \({\mathop{\rm w}\nolimits} \), find scalars (c) which solve \({c_1}{{\mathop{\rm v}\nolimits} _1} + {c_2}{{\mathop{\rm v}\nolimits} _2} + {c_3}{{\mathop{\rm v}\nolimits} _3} + {c_4}{{\mathop{\rm v}\nolimits} _4} = 0\).

Consider the augmented matrix shown below:

\(\left( {\begin{array}{*{20}{c}}{{{\mathop{\rm v}\nolimits} _1}}&{{{\mathop{\rm v}\nolimits} _2}}&{ - {{\mathop{\rm v}\nolimits} _3}}&{ - {{\mathop{\rm v}\nolimits} _4}}&0\end{array}} \right) = \left( {\begin{array}{*{20}{c}}5&1&{ - 2}&0&0\\3&3&1&{12}&0\\8&4&{ - 5}&{28}&0\end{array}} \right)\)

Step 2: Convert the matrix into the row-reduced echelon form

Consider the matrix \(A = \left( {\begin{array}{*{20}{c}}5&1&{ - 2}&0&0\\3&3&1&{12}&0\\8&4&{ - 5}&{28}&0\end{array}} \right)\).

Use the code in MATLAB to obtain the row-reduced echelon form as shown below:

\(\begin{array}{l} > > {\mathop{\rm A}\nolimits} = \left( {5\,\,\,1\,\,\, - 2\,\,\,0\,\,\,0;\,3\,\,\,3\,\,\,1\,\,\,\,12\,\,\,0;\,\,\,\,8\,\,\,4\,\,\, - 5\,\,\,28\,\,\,0} \right)\\ > > {\mathop{\rm U}\nolimits} = {\mathop{\rm rref}\nolimits} \left( {\mathop{\rm A}\nolimits} \right)\end{array}\)

\(\left( {\begin{array}{*{20}{c}}5&1&{ - 2}&0&0\\3&3&1&{12}&0\\8&4&{ - 5}&{28}&0\end{array}} \right) \sim \left( {\begin{array}{*{20}{c}}1&0&0&{\frac{{ - 10}}{3}}&0\\0&1&0&{\frac{{26}}{3}}&0\\0&0&1&{ - 4}&0\end{array}} \right)\)

Step 3: Determine the nonzero vector w that generates the line

The vector of \({c_j}'{\mathop{\rm s}\nolimits} \) is a multiple of \(\left( {\frac{{10}}{3},\frac{{ - 26}}{3},4,1} \right)\).

For example, \(\left( {10, - 26,12,3} \right)\) yields \({\mathop{\rm w}\nolimits} = 10{{\mathop{\rm v}\nolimits} _1} - 26{{\mathop{\rm v}\nolimits} _2} = 12{{\mathop{\rm v}\nolimits} _3} + 3{{\mathop{\rm v}\nolimits} _4} = \left( {24, - 48, - 24} \right)\). The other option for \({\mathop{\rm w}\nolimits} \) is \(\left( {1, - 2, - 1} \right)\).

Thus, the nonzero vector w that generates the line is \(\left( {1, - 2, - 1} \right)\).

Most popular questions for Math Textbooks

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.