• :00Days
• :00Hours
• :00Mins
• 00Seconds
A new era for learning is coming soon Suggested languages for you:

Europe

Answers without the blur. Sign up and see all textbooks for free! Q42E

Expert-verified Found in: Page 185 ### Linear Algebra With Applications

Book edition 5th
Author(s) Otto Bretscher
Pages 442 pages
ISBN 9780321796974 # T denotes the space of infinity sequence of real numbers, ${\mathbf{}}{\mathbit{T}}{\mathbf{\left(}}{\mathbit{f}}{\mathbf{\left(}}{\mathbit{t}}{\mathbf{\right)}}{\mathbf{\right)}}{\mathbf{=}}\left[\begin{array}{cc}f& \left(7\right)\\ f& \left(11\right)\end{array}\right]{\mathbf{}}{\mathbit{f}}{\mathbit{r}}{\mathbit{o}}{\mathbit{m}}{\mathbf{}}{{\mathbit{P}}}_{\mathbf{2}\mathbf{}}{\mathbit{t}}{\mathbit{o}}{\mathbf{}}{{\mathbit{R}}}^{{\mathbf{2}}}$ .

The function T is linear but not isomorphism.

See the step by step solution

## Step 1: Determine the linearity of T.

$\left[\begin{array}{cc}\mathrm{f}& \left(7\right)\\ \mathrm{f}& \left(11\right)\end{array}\right]forT\left(f\left(t\right)\right)and\left[\begin{array}{cc}g& \left(7\right)\\ g& \left(11\right)\end{array}\right]forT\left(g\left(t\right)\right)inT\left(f\left(t\right)\right)+T\left(g\left(t\right)\right)asfollows$Consider the function $T\left(f\left(t\right)\right)=\left[\begin{array}{cc}\mathrm{f}& \left(7\right)\\ \mathrm{f}& \left(11\right)\end{array}\right]from{P}_{2}to{R}^{2}$

A function is called a linear transformation on if the function satisfies the following properties.

1. ${\mathbf{}}{\mathbit{D}}{\mathbf{\left(}}{\mathbit{x}}{\mathbf{+}}{\mathbit{y}}{\mathbf{\right)}}{\mathbf{=}}{\mathbit{D}}{\mathbf{\left(}}{\mathbit{x}}{\mathbf{\right)}}{\mathbf{+}}{\mathbit{D}}{\mathbf{\left(}}{\mathbit{y}}{\mathbf{\right)}}{\mathbf{}}{\mathbit{f}}{\mathbit{o}}{\mathbit{r}}{\mathbf{}}{\mathbit{a}}{\mathbit{l}}{\mathbit{l}}{\mathbf{}}{\mathbit{x}}{\mathbf{,}}{\mathbit{y}}{\mathbf{\in }}{\mathbit{R}}{\mathbf{.}}$
2. ${\mathbf{}}{\mathbit{D}}{\mathbf{\left(}}{\mathbit{\alpha }}{\mathbit{x}}{\mathbf{\right)}}{\mathbf{=}}{\mathbit{\alpha }}{\mathbit{D}}{\mathbf{\left(}}{\mathbit{x}}{\mathbf{\right)}}{\mathbf{}}{\mathbit{f}}{\mathbit{o}}{\mathbit{r}}{\mathbf{}}{\mathbit{a}}{\mathbit{l}}{\mathbit{l}}{\mathbf{}}{\mathbit{c}}{\mathbit{o}}{\mathbit{n}}{\mathbit{s}}{\mathbit{t}}{\mathbit{a}}{\mathbit{n}}{\mathbit{t}}{\mathbf{}}{\mathbit{\alpha }}{\mathbf{\in }}{\mathbit{R}}{\mathbf{.}}$

An invertible linear transformation is called isomorphism or dimension of domain and co-domain is not same then the function is not isomorphism.

Assume $f,g\in {P}_{2}$ then localid="1659410729239" $T\left(f\left(t\right)\right)=\left[\begin{array}{cc}\mathrm{f}& \left(7\right)\\ \mathrm{f}& \left(11\right)\end{array}\right]andT\left(g\left(t\right)\right)=\left[\begin{array}{cc}g& \left(7\right)\\ g& \left(11\right)\end{array}\right]$and .

Substitute the value $\left[\begin{array}{cc}\mathrm{f}& \left(7\right)\\ \mathrm{f}& \left(11\right)\end{array}\right]forT\left(f\left(t\right)\right)and\left[\begin{array}{cc}g& \left(7\right)\\ g& \left(11\right)\end{array}\right]forT\left(g\left(t\right)\right)inT\left(f\left(t\right)\right)+T\left(g\left(t\right)\right)asfollows$

$T\left(f\left(t\right)\right)+T\left(g\left(t\right)\right)=\left[\begin{array}{cc}\mathrm{f}& \left(7\right)\\ \mathrm{f}& \left(11\right)\end{array}\right]+\left[\begin{array}{cc}g& \left(7\right)\\ g& \left(11\right)\end{array}\right]$

Now, simplify $T\left(\left\{f+g\right\}\left(t\right)\right)$ as follows.

localid="1659410186169" $T\left(\left\{f+g\right\}\left(t\right)\right)=\left[\begin{array}{cc}\left\{f+g\right\}& \left(7\right)\\ \left\{f+g\right\}& \left(11\right)\end{array}\right]\phantom{\rule{0ex}{0ex}}=\left[\begin{array}{cc}f\left(7\right)+& g\left(7\right)\\ f\left(11\right)+& g\left(11\right)\end{array}\right]\phantom{\rule{0ex}{0ex}}=\left[\begin{array}{c}f\left(7\right)\\ f\left(11\right)\end{array}\right]+\left[\begin{array}{c}g\left(7\right)\\ g\left(11\right)\end{array}\right]\phantom{\rule{0ex}{0ex}}T\left(\left\{f+g\right\}\left(t\right)\right)=T\left(f\left(t\right)\right)+T\left(g\left(t\right)\right)$'

Assume localid="1659410277772" $f\in {P}_{2}and\alpha \in RthenT\left(f\left(t\right)\right)=\left[\begin{array}{cc}\mathrm{f}& \left(7\right)\\ \mathrm{f}& \left(11\right)\end{array}\right]$and then .

Substitute the value $\left[\begin{array}{cc}\mathrm{\alpha f}& \left(7\right)\\ \mathrm{\alpha f}& \left(11\right)\end{array}\right]forT\left(f\left(t\right)\right)$ as follows.

$T\left(\alpha f\left(t\right)\right)=\left[\begin{array}{cc}\mathrm{\alpha f}& \left(7\right)\\ \mathrm{\alpha f}& \left(11\right)\end{array}\right]\phantom{\rule{0ex}{0ex}}=\alpha \left[\begin{array}{cc}\mathrm{f}& \left(7\right)\\ \mathrm{f}& \left(11\right)\end{array}\right]\phantom{\rule{0ex}{0ex}}T\left(\alpha f\left(t\right)\right)=\alpha T\left(f\left(t\right)\right)$

As $T\left(f+g\left(t\right)\right)=T\left(f\left(t\right)\right)+T\left(g\left(t\right)\right)andT\left(\alpha f\left(t\right)\right)=\alpha T\left(f\left(t\right)\right)$ , by the definition of linear transformation T is linear.

## Step 2: Determine the isomorphism of  T.

As the function T define from ${P}_{2}to{R}^{2}and{P}_{2}$ is spanned by $\left\{1,t,{t}^{2}\right\}$ means dimension of ${P}_{2}$ is 3 and dimension of ${R}^{2}$ is 2.

By the definition of isomorphism, the function T is not isomorphism.

Hence, the transformation $T\left(f\left(t\right)\right)=\left[\begin{array}{cc}\mathrm{f}& \left(7\right)\\ \mathrm{f}& \left(11\right)\end{array}\right]$ is linear but not isomorphism. ### Want to see more solutions like these? 