 Suggested languages for you:

Europe

Answers without the blur. Sign up and see all textbooks for free! Q43E

Expert-verified Found in: Page 74 ### Linear Algebra With Applications

Book edition 5th
Author(s) Otto Bretscher
Pages 442 pages
ISBN 9780321796974 # Use the formula derived in Exercise ${\mathbf{2}}{\mathbf{.}}{\mathbf{1}}{\mathbf{.}}{\mathbf{13}}$ to find the inverse of the rotation matrix localid="1659346816315" ${\mathbf{A}}{\mathbf{=}}\mathbf{\left[}\begin{array}{cc}\mathbf{cos\theta }& \mathbf{-}\mathbf{sin\theta }\\ \mathbf{sin\theta }& \mathbf{cos\theta }\end{array}\mathbf{\right]}$. Interpret the linear transformation defined by ${{\mathbf{A}}}^{\mathbf{-}\mathbf{1}}$geometrically. Explain.

The inverse of the matrix is, ${\mathrm{A}}^{-1}=\left(\begin{array}{cc}\mathrm{cos\theta }& \mathrm{sin\theta }\\ -\mathrm{sin\theta }& \mathrm{cos\theta }\end{array}\right)$ , the geometrical interpretation is, .

See the step by step solution

## Step 1: Compute the inverse of the matrix.

Consider the matrix.

$\mathrm{A}=\left(\begin{array}{cc}\mathrm{cos\theta }& -\mathrm{sin\theta }\\ \mathrm{sin\theta }& \mathrm{cos\theta }\end{array}\right)$

The inverse of the matrix is,

${\mathrm{A}}^{-1}=\frac{1}{\mathrm{cos\theta }×\mathrm{cos\theta }-\mathrm{sin\theta }×-\mathrm{sin}\theta }\left(\begin{array}{cc}\mathrm{cos\theta }& \mathrm{sin\theta }\\ -\mathrm{sin\theta }& \mathrm{cos\theta }\end{array}\right)\phantom{\rule{0ex}{0ex}}⇒{\mathrm{A}}^{-1}=\frac{1}{{\mathrm{cos}}^{2}\theta +{\mathrm{sin}}^{2}\theta }\left(\begin{array}{cc}\mathrm{cos\theta }& \mathrm{sin\theta }\\ -\mathrm{sin\theta }& \mathrm{cos\theta }\end{array}\right)\phantom{\rule{0ex}{0ex}}\therefore {\mathrm{A}}^{-1}=\left(\begin{array}{cc}\mathrm{cos\theta }& \mathrm{sin\theta }\\ -\mathrm{sin\theta }& \mathrm{cos\theta }\end{array}\right)$

## Step 2: Interpret the linear transformation.

The matrix $A$ represents the rotation by an angle $\theta$ and scaling by a factor $r$.

The inverse matrix ${A}^{-1}$ represents the rotation by an angle $-\theta$ and scaling by a factor $\frac{1}{r}$.The geometrical representation is, The inverse matrix is, ${\mathrm{A}}^{-1}=\left(\begin{array}{cc}\mathrm{cos\theta }& \mathrm{sin\theta }\\ -\mathrm{sin\theta }& \mathrm{cos\theta }\end{array}\right)$ with geometrical interpretation of linear

transformation is,  ### Want to see more solutions like these? 