• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q8E

Expert-verified
Linear Algebra With Applications
Found in: Page 57
Linear Algebra With Applications

Linear Algebra With Applications

Book edition 5th
Author(s) Otto Bretscher
Pages 442 pages
ISBN 9780321796974

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Question 8: Find the inverse of linear transformation

y1=x1+7x2y2=3x1+20x2

Answer:

Inverse of the transformation isT-1(x1,x2)=(-20x1+7x2,3x1-x2) .

See the step by step solution

Step by Step Solution

Step1: System of equations

We have given a linear transformation with

y1=x1+7x2y2=3x1+20x2

Step2: Linear Transformation

Let T be linear transformation from R2R2.

Then, according to given equations.

Tx1x2=x1+7x23x1+20x2

Step3: Matrix for linear transformation

The matrix representation of T by 2x2 matrix.

.A=17320

Inverse of matrix is calculated as

First of all we will find the determinant of matrix.

A=20-21=-1adjA=20-7-31

Inverse of matrix= .A-1=-2073-1

Hence, inverse of the transformation will be

T-1(x1,x2)=(-20x1+7x2,3x1-x2)

Hence, inverse of the transformation isdata-custom-editor="chemistry" T-1(x1,x2)=(-20x1+7x2,3x1-x2)

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.