StudySmarter AI is coming soon!

- :00Days
- :00Hours
- :00Mins
- 00Seconds

A new era for learning is coming soonSign up for free

Suggested languages for you:

Americas

Europe

Q31E

Expert-verifiedFound in: Page 144

Book edition
5th

Author(s)
Otto Bretscher

Pages
442 pages

ISBN
9780321796974

**Let V be the subspace of ${{\mathbf{\mathbb{R}}}}^{{\mathbf{4}}}$ defined by the equation**

** ${{\mathbf{x}}}_{{\mathbf{1}}}{\mathbf{-}}{{\mathbf{x}}}_{{\mathbf{2}}}{\mathbf{+}}{\mathbf{2}}{{\mathbf{x}}}_{{\mathbf{3}}}{\mathbf{+}}{\mathbf{4}}{{\mathbf{x}}}_{{\mathbf{4}}}{\mathbf{=}}{\mathbf{0}}$**

**Find a linear transformation T from ${{\mathbf{\mathbb{R}}}}^{{\mathbf{4}}}$to ${{\mathbf{\mathbb{R}}}}^{{\mathbf{4}}}$ such that ${\mathbf{ker}}{\mathbf{\left(}}{\mathbf{T}}{\mathbf{\right)}}{\mathbf{=}}{\left\{\overrightarrow{0}\right\}}$ and im(T) = V. Describe T by its matrix A.**

The basis of the subspace V of ${\mathrm{\mathbb{R}}}^{4}$ defined by the equation${x}_{1}-{x}_{2}+2{x}_{3}+4{x}_{4}=0$ is $\left\{\left[\begin{array}{c}1\\ 1\\ 0\\ 0\end{array}\right],\left[\begin{array}{c}-2\\ 0\\ 1\\ 0\end{array}\right],\left[\begin{array}{c}-4\\ 0\\ 0\\ 1\end{array}\right]\right\}$ and the matrix of the linear transformation T from to is

$A{=}^{\left[\begin{array}{ccc}1& -2& -4\\ 1& 0& 0\\ 0& 1& 0\\ 0& 0& 1\end{array}\right]}$.

${x}_{1}-{x}_{2}+2{x}_{3}+4{x}_{4}=0$

Let V be a subspace ${\mathrm{\mathbb{R}}}^{4}$such that

localid="1659931383607" $V=\left\{\left({x}_{1},{x}_{2},{x}_{3},{x}_{4}\right)\in {\mathrm{\mathbb{R}}}^{4};{x}_{1}-{x}_{2}+2{x}_{3}+4{x}_{4}=0\right\}\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}\Rightarrow V=\left\{\left({x}_{1}-2{x}_{3}-4{x}_{4},{x}_{2},{x}_{3},{x}_{4}\right)\in {\mathrm{\mathbb{R}}}^{4};{x}_{1}={x}_{2}-2{x}_{3}-4{x}_{4}\right\}\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}\Rightarrow V=\left\{{x}_{2}\left[\begin{array}{c}1\\ 1\\ 0\\ 0\end{array}\right]+{x}_{3}\left[\begin{array}{c}-2\\ 0\\ 1\\ 0\end{array}\right]+{x}_{4}\left[\begin{array}{c}-4\\ 0\\ 0\\ 1\end{array}\right]\right\}$ $\Rightarrow BasisofV=\left\{\left[\begin{array}{c}1\\ 1\\ 0\\ 0\end{array}\right],\left[\begin{array}{c}-2\\ 0\\ 1\\ 0\end{array}\right],\left[\begin{array}{c}-4\\ 0\\ 0\\ 1\end{array}\right]\right\}$.

Since the basis of the subspace V= $\left\{\left[\begin{array}{c}\begin{array}{c}1\\ 1\\ 0\\ 0\end{array}\end{array}\right],\left[\begin{array}{c}-2\\ 0\\ 1\\ 0\end{array}\right],\left[\begin{array}{c}-4\\ 0\\ 0\\ 1\end{array}\right]\right\}$, thus the dimension of the subspace V is three.

Also, the vectors in the basis of V are linearly independent so, we have

$lm\left(T\right)=V\mathrm{and}Ker\left(T\right)=\left\{\right\}$

Thus if T is a linear transformation from${\mathrm{\mathbb{R}}}^{4}$to ${\mathrm{\mathbb{R}}}^{4}$such that $T\left(\overrightarrow{x}\right)=A\overrightarrow{x}$ then

$A{=}^{\left[\begin{array}{ccc}\begin{array}{c}1\\ 1\\ 0\\ 0\end{array}& \begin{array}{c}-2\\ 0\\ 1\\ 0\end{array}& \begin{array}{c}-4\\ 0\\ 0\\ 1\end{array}\end{array}\right]}$

The basis of the subspace V of ${\mathrm{\mathbb{R}}}^{4}$ defined by the equation${x}_{1}-{x}_{2}+2{x}_{3}+4{x}_{4}=0$is localid="1659870465922" $\left\{\left[\begin{array}{c}\begin{array}{c}1\\ 1\\ 0\\ 0\end{array}\end{array}\right],\left[\begin{array}{c}-2\\ 0\\ 1\\ 0\end{array}\right],\left[\begin{array}{c}-4\\ 0\\ 0\\ 1\end{array}\right]\right\}$ and the matrix of the linear transformation T from ${\mathrm{\mathbb{R}}}^{3}$to ${\mathrm{\mathbb{R}}}^{4}$is

localid="1659870529535" $A{=}^{\left[\begin{array}{ccc}\begin{array}{c}1\\ 1\\ 0\\ 0\end{array}& \begin{array}{c}-2\\ 0\\ 1\\ 0\end{array}& \begin{array}{c}-4\\ 0\\ 0\\ 1\end{array}\end{array}\right]}$.

94% of StudySmarter users get better grades.

Sign up for free