• :00Days
• :00Hours
• :00Mins
• 00Seconds
A new era for learning is coming soon Suggested languages for you:

Europe

Answers without the blur. Sign up and see all textbooks for free! Q. 28

Expert-verified Found in: Page 616 ### Pre-algebra

Book edition Common Core Edition
Author(s) Ron Larson, Laurie Boswell, Timothy D. Kanold, Lee Stiff
Pages 183 pages
ISBN 9780547587776 # Find the midpoint of the segment with the given endpoints.$\left(-16,\text{ }-5\right),\text{ }\left(5,\text{ }5\right)$

The midpoint of the segment with the endpoints $\left(-16,-5\right),\left(5,5\right)$is $\left(-\frac{11}{2},0\right)$.

See the step by step solution

## Step 1. Given Information.

The given endpoints are$\left(-16,-5\right),\left(5,5\right)$

## Step 2. Formula used.

The midpoint of the segment with the endpoints$\left({x}_{1},{y}_{1}\right),\left({x}_{2},{y}_{2}\right)$ is$\left(\frac{{x}_{1}+{x}_{2}}{2},\frac{{y}_{1}+{y}_{2}}{2}\right)$.

## Step 3. Calculation.

To find midpoint of the segment, substitute$\left({x}_{1},{y}_{1}\right)=\left(-16,-5\right)$ and$\left({x}_{2},{y}_{2}\right)=\left(5,5\right)$ into the midpoint formula then simplify it.

$\begin{array}{c}\left(\frac{{x}_{1}+{x}_{2}}{2},\frac{{y}_{1}+{y}_{2}}{2}\right)=\left(\frac{-16+5}{2},\frac{-5+5}{2}\right)\\ \left(\frac{{x}_{1}+{x}_{2}}{2},\frac{{y}_{1}+{y}_{2}}{2}\right)=\left(-\frac{11}{2},0\right)\end{array}$

## Step 4. Conclusion.

The midpoint of the segment with the endpoints$\left(-16,-5\right),\left(5,5\right)$ is$\left(-\frac{11}{2},0\right)$. ### Want to see more solutions like these? 