• :00Days
• :00Hours
• :00Mins
• 00Seconds
A new era for learning is coming soon Suggested languages for you:

Europe

Answers without the blur. Sign up and see all textbooks for free! Q.28

Expert-verified Found in: Page 546 ### Pre-algebra

Book edition Common Core Edition
Author(s) Ron Larson, Laurie Boswell, Timothy D. Kanold, Lee Stiff
Pages 183 pages
ISBN 9780547587776 # Find the midpoint of the segment with endpoints $\left(-7,5\right)$ and$\left(4,-20\right)$.

The coordinate of midpoint is$\left(-\frac{3}{2},-\frac{15}{2}\right)$.

See the step by step solution

## Step 1. Given Information.

The endpoints are:

$\left(-7,5\right)$ and $\left(4,-20\right)$

## Step 2. Property used.

Mid-point formula.

$x=\frac{{x}_{1}+{x}_{2}}{2}$,$y=\frac{{y}_{1}+{y}_{2}}{2}$

## Step 3. Calculation.

Let mid-point be$\left(x,y\right)$.

End-points:$\left(-7,5\right)$, $\left(4,-20\right)$

Find x-coordinate of mid-point.

$\begin{array}{c}x=\frac{{x}_{1}+{x}_{2}}{2}\\ =\frac{-7+4}{2}\\ =-\frac{3}{2}\end{array}$

Find y-coordinate of mid-point.

$\begin{array}{c}y=\frac{{y}_{1}+{y}_{2}}{2}\\ =\frac{5-20}{2}\\ =-\frac{15}{2}\end{array}$

Hence, the midpoint is$\left(-\frac{3}{2},-\frac{15}{2}\right)$.

## Step 4. Conclusion.

The coordinate of midpoint is $\left(-\frac{3}{2},-\frac{15}{2}\right)$. ### Want to see more solutions like these? 