• :00Days
• :00Hours
• :00Mins
• 00Seconds
A new era for learning is coming soon Suggested languages for you:

Europe

Answers without the blur. Sign up and see all textbooks for free! Q5.

Expert-verified Found in: Page 120 ### Pre-algebra

Book edition Common Core Edition
Author(s) Ron Larson, Laurie Boswell, Timothy D. Kanold, Lee Stiff
Pages 183 pages
ISBN 9780547587776 # How is solving $3\mathrm{x}-7=-5$different from solving $3\mathrm{x}+7=-5$?

Solving equation $3x-7=-5$ requires addition of 7 to both sides of the equation first and solving $3x+7=-5$ requires subtraction of 7 from both sides of the equation first.

See the step by step solution

## Step 1 – Solve the first equation

Solve the equation $3x-7=-5$.

$\begin{array}{l}3x-7=-5\\ 3x=-5+7\\ 3x=2\\ x=\frac{2}{3}\end{array}$

The solution of the equation is$x=\frac{2}{3}$.

## Step 2 – Solve the second equation

Write the second equation and solve it.

$\begin{array}{l}3x+7=-5\\ 3x=-5-7\\ 3x=-12\\ x=\frac{-12}{3}\\ x=-4\end{array}$

Therefore, the solution of the equation is $x=-4$.

## Step 3 – Observation from equations

To solve the $3x-7=-5$, one needs to add 7 to both sides of the equation first and for solving $3x+7=-5$, one needs to subtract 7 from both sides of the equation.

Thus, solving equation $3x-7=-5$ requires addition of 7 to both sides of the equation first and solving $3x+7=-5$requires subtraction of 7 from both sides of the equation first. ### Want to see more solutions like these? 