Suggested languages for you:

Americas

Europe

Q. 23

Expert-verified
Found in: Page 876

Precalculus Enhanced with Graphing Utilities

Book edition 6th
Author(s) Sullivan
Pages 1200 pages
ISBN 9780321795465

Graph each function. Use the graph to find the indicated limit, if it exists.$\underset{x\to 4}{\mathrm{lim}}f\left(x\right),f\left(x\right)=3x+1$

The limit is $13$.

See the step by step solution

Step 1. Given Information

We are given a function $f\left(x\right)=3x+1$ and we need to graph the function and find $\underset{x\to 4}{\mathrm{lim}}f\left(x\right)$.

Step 2. Plotting the graph

The function $f\left(x\right)=3x+1$ is a linear function. So, the graph of the function is

Step 3. Finding the limit

To find the value of $\underset{x\to 4}{\mathrm{lim}}f\left(x\right)$ we need to find the value of the function at $x=4$.

localid="1646974582416" $f\left(x\right)=3x+1\phantom{\rule{0ex}{0ex}}⇒f\left(4\right)=3\left(4\right)+1\phantom{\rule{0ex}{0ex}}⇒f\left(4\right)=13\phantom{\rule{0ex}{0ex}}\therefore \underset{x\to 4}{\mathrm{lim}}f\left(x\right)=13$