Suggested languages for you:

Americas

Europe

Q. 74

Expert-verified
Found in: Page 269

### Precalculus Enhanced with Graphing Utilities

Book edition 6th
Author(s) Sullivan
Pages 1200 pages
ISBN 9780321795465

# Use the graph of $y=f\left(x\right)$ given in Problem $44$ to evaluatethe following:(a) $f\left(2\right)$(b) $f\left(1\right)$(c) ${f}^{-1}\left(0\right)$(d) ${f}^{-1}\left(-1\right)$

According to the graph of$y=f\left(x\right)$ and its inverse

(a)$f\left(2\right)=\frac{1}{2}$

(b)$f\left(1\right)=0$

(c) ${f}^{-1}\left(0\right)=1$

(d) ${f}^{-1}\left(-1\right)=0$

See the step by step solution

## Step 1. Given data

Graph of $y=f\left(x\right)$ is

## Step 2. Graph of the inverse function

Points on the graph of $y=f\left(x\right)$ are

$\left(-2,-2\right),\left(0,-1\right),\left(1,0\right),\left(2,0.5\right)$

then the points on the inverse function $y={f}^{-1}\left(x\right)$will be

$\left(-2,-2\right),\left(-1,0\right),\left(0,1\right),\left(0.5,2\right)$

So the graph of the inverse function is

## Step 3. Part (a)

From the graph

$\left(2,\frac{1}{2}\right)$is a point on the graph of $y=f\left(x\right)$

sorole="math" localid="1646169175430" $f\left(2\right)=\frac{1}{2}$

## Step 4. Part (b)

From the graph

$\left(1,0\right)$ is a point on the graph of $y=f\left(x\right)$

so$f\left(1\right)=0$

## Step 5. Part (c)

From the graph

$\left(0,1\right)$is a point on the graph of $y={f}^{-1}\left(x\right)$

so${f}^{-1}\left(0\right)=1$

## Step 6. Part (d)

From the graph

$\left(-1,0\right)$is a point on the graph of $y={f}^{-1}\left(x\right)$

so${f}^{-1}\left(-1\right)=0$