StudySmarter AI is coming soon!

- :00Days
- :00Hours
- :00Mins
- 00Seconds

A new era for learning is coming soonSign up for free

Suggested languages for you:

Americas

Europe

Q. 53

Expert-verifiedFound in: Page 603

Book edition
6th

Author(s)
Sullivan

Pages
1200 pages

ISBN
9780321795465

Find a vector $v$ whose magnitude is $4$ and whose component

in the $i$direction is twice the component in the $j$ direction.

The vector is $\frac{8}{\sqrt{5}}i+\frac{4}{\sqrt{5}}j$

According to the question the vector will be,

$v=2xi+xj$

The magnitude of the vector $v=2xi+xj$ is$\sqrt{4{x}^{2}+{x}^{2}}=4$

$\sqrt{5{x}^{2}}=4\phantom{\rule{0ex}{0ex}}5{x}^{2}=16\phantom{\rule{0ex}{0ex}}{x}^{2}=\frac{16}{5}\phantom{\rule{0ex}{0ex}}x=\frac{4}{\sqrt{5}}$

Now the vector will be

$v=2xi+xj\phantom{\rule{0ex}{0ex}}v=2\left(\frac{4}{\sqrt{5}}\right)i+\frac{4}{\sqrt{5}}j\phantom{\rule{0ex}{0ex}}v=\frac{8}{\sqrt{5}}i+\frac{4}{\sqrt{5}}j$

94% of StudySmarter users get better grades.

Sign up for free