StudySmarter AI is coming soon!

- :00Days
- :00Hours
- :00Mins
- 00Seconds

A new era for learning is coming soonSign up for free

Suggested languages for you:

Americas

Europe

Q 58.

Expert-verifiedFound in: Page 825

Book edition
6th

Author(s)
Sullivan

Pages
1200 pages

ISBN
9780321795465

In Problems 51–66, determine whether each infinite geometric series converges or diverges. If it converges, find its sum.

$9+12+16+\frac{64}{3}+....$

The given infinite geometric series $9+12+16+\frac{64}{3}+....$ is diverges.

The given geometric series is:

$9+12+16+\frac{64}{3}+....$

${a}_{1}=9,{a}_{2}=12,{a}_{3}=16,{a}_{4}=\frac{64}{3}$

The common ratio is the ratio of successive terms:

$\frac{12}{9}=\frac{4}{3},\frac{16}{12}=\frac{4}{3}\phantom{\rule{0ex}{0ex}}r=\frac{4}{3}$

If $\left|r\right|<1$ then the infinite geometric series $\sum _{k=1}^{\infty}{a}_{1}{r}^{k-1}$ converges.

As we can see that $r=\frac{4}{3}\mathrm{and}\frac{4}{3}>1$, therefore the given series is not converges.

The given infinite geometric series is diverges.

94% of StudySmarter users get better grades.

Sign up for free