Suggested languages for you:

Americas

Europe

Q22CQ

Expert-verifiedFound in: Page 772

Book edition
1st Edition

Author(s)
Paul Peter Urone

Pages
1272 pages

ISBN
9781938168000

**Apply the loop rule to loop \({\rm{afedcba}}\) in Figure \({\rm{21}}{\rm{.47}}\)**

Applying loop rule in \({\rm{afedcba}}\) gives us: \({I_1}\left( {{r_1} + {R_1} + {R_4}} \right) + {I_2}({R_3} + {r_3} + {r_4}) - {E_1} - {E_3} + {E_4} = 0\)

**According to this rule, the sum of potential differences of all the components in a loop should be zero,**

Applying the loop rule in loop afedcba, we get

\(\begin{array}{l}{I_1}{r_1} - {E_1} + {I_1}{R_4} + {E_4} + {I_2}{r_4} + {I_2}{r_3} - {E_3} + {I_2}{R_3} + {I_1}{R_1} = 0\\{I_1}\left( {{r_1} + {R_1} + {R_4}} \right) + {I_2}({R_3} + {r_3} + {r_4}) - {E_1} - {E_3} + {E_4} = 0\end{array}\)

Therefore, we got the relation: \({I_1}\left( {{r_1} + {R_1} + {R_4}} \right) + {I_2}({R_3} + {r_3} + {r_4}) - {E_1} - {E_3} + {E_4} = 0\)

94% of StudySmarter users get better grades.

Sign up for free