Suggested languages for you:

Americas

Europe

Q33PE

Expert-verifiedFound in: Page 766

Book edition
1st Edition

Author(s)
Paul Peter Urone

Pages
1272 pages

ISBN
9781938168000

**Verify the second equation in Example 21.5 by substituting the values found for the currents ${{\mathbf{l}}}_{{\mathbf{1}}}$ and**** ${{\mathbf{l}}}_{{\mathbf{2}}}$**

The sum of all potential differences in a circuit must equal zero.

**Kirchhoff's first law defines currents at circuit junctions. It states that the sum of currents flowing into and out of a junction in an electrical circuit equals the sum of currents flowing out of the junction.**

${\mathrm{E}}_{1}=18\mathrm{V},{\mathrm{R}}_{1}=6{\mathrm{\Omega r}}_{1}=0.5\mathrm{\Omega}\phantom{\rule{0ex}{0ex}}{\mathrm{E}}_{2}=45\mathrm{V},{\mathrm{R}}_{2}=2.5{\mathrm{\Omega r}}_{2}=0.5\mathrm{\Omega}\phantom{\rule{0ex}{0ex}}{\mathrm{R}}_{3}=1.5\mathrm{\Omega}$

Applying Kirchhoff's loop rule we obtain:

$-\left({\mathrm{l}}_{2}-{\mathrm{l}}_{1}\right)\left({\mathrm{R}}_{1}\right)+{\mathrm{l}}_{2}\left({\mathrm{r}}_{1}\right)+{\mathrm{E}}_{1}+{\mathrm{l}}_{2}\left({\mathrm{R}}_{2}\right)=0$

Consider the equation:

$-\left({\mathrm{l}}_{2}-{\mathrm{l}}_{1}\right)\left({\mathrm{R}}_{1}\right)+{\mathrm{l}}_{2}\left({\mathrm{r}}_{1}\right)+{\mathrm{E}}_{1}+{\mathrm{l}}_{2}\left({\mathrm{R}}_{2}\right)=0$

Substitute the values:

${\mathrm{l}}_{1}=18.5\mathrm{A}\phantom{\rule{0ex}{0ex}}{\mathrm{l}}_{2}=2\mathrm{A}\phantom{\rule{0ex}{0ex}}{\mathrm{l}}_{3}=16.5\mathrm{A}$

The sum of all currents entering a location equals the sum of currents leaving the exact point, according to Kirchhoff's junction laws. In addition, the second rule, known as the loop rule, stipulates that the sum of all potential differences in a circuit must equal zero.

Hence we find that result is equal to zero.

94% of StudySmarter users get better grades.

Sign up for free