Americas
Europe
Q41PE
Expert-verifiedWhat is the force on the charge located at \(x = 8.00{\rm{ }}cm\) in Figure 18.52(a) given that \(q = 1.00{\rm{ }}\mu C\)?
Figure 18.52 (a) Point charges located at \[{\bf{3}}.{\bf{00}},{\rm{ }}{\bf{8}}.{\bf{00}},{\rm{ }}{\bf{and}}{\rm{ }}{\bf{11}}.{\bf{0}}{\rm{ }}{\bf{cm}}\] along the x-axis. (b) Point charges located at \[{\bf{1}}.{\bf{00}},{\rm{ }}{\bf{5}}.{\bf{00}},{\rm{ }}{\bf{8}}.{\bf{00}},{\rm{ }}{\bf{and}}{\rm{ }}{\bf{14}}.{\bf{0}}{\rm{ }}{\bf{cm}}\] along the x-axis
The force on the charge located at \(x = 8.00{\rm{ cm}}\) is \({\rm{12}}{\rm{.8 }}N\).
The electrostatic force is a vector quantity. When a test charge is placed in a system of charges, each charge will exert electrostatic force on it. The resultant force on the test charge can be obtained by the vector sum of all the forces acting on it.
The electrostatic force between two charges \({q_1}\) and \({q_2}\) separated by a distance r is,
\(F = \frac{{K{q_1}{q_2}}}{{{r^2}}}\)
Here, \(K\) is the electrostatic force constant.
The force acting on the charge located at \(x = 8.00{\rm{ cm}}\) is represented as,
Force acting on the charge located at \(x = 8.00{\rm{ cm}}\)
Here, \({F_3}\) is the force of attraction due to charge at \(x = 3.00{\rm{ cm}}\) and \({F_{11}}\) is the force of attraction due to charge at \(x = 11.00{\rm{ cm}}\).
The force of attraction between the charge located at \(x = 3.00{\rm{ cm}}\) and \(x = 8.00{\rm{ cm}}\) is,
\[{F_{11}} = \frac{{K\left( q \right)\left( {2q} \right)}}{{{{\left( {{r_3} - {r_8}} \right)}^2}}}\]
Substitute \(9 \times {10^9}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}\) for K, \(1.00{\rm{ }}\mu C\) for \(q\), \(3.00{\rm{ cm}}\) for \[{r_3}\] and \(8.00{\rm{ cm}}\) for \[{r_8}\],
\(\begin{array}{c}{{\rm{F}}_{\rm{3}}}{\rm{ = }}\frac{{\left( {9 \times {{10}^9}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right){\rm{ \times }}\left( {{\rm{1}}{\rm{.00 \mu C}}} \right){\rm{ \times }}\left( {{\rm{2 \times 1}}{\rm{.00 \mu C}}} \right)}}{{{{\left[ {\left( {{\rm{3}}{\rm{.00 cm}}} \right){\rm{ - }}\left( {{\rm{8}}{\rm{.00 cm}}} \right)} \right]}^{\rm{2}}}}}\\{\rm{ = }}\frac{{\left( {9 \times {{10}^9}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right){\rm{ \times }}\left( {{\rm{1}}{\rm{.00 \mu C}}} \right){\rm{ \times }}\left( {{\rm{2 \times 1}}{\rm{.00 \mu C}}} \right)}}{{{{\left[ {{\rm{ - }}\left( {{\rm{5}}{\rm{.00 cm}}} \right)} \right]}^{\rm{2}}}}}\\{\rm{ = }}\frac{{\left( {9 \times {{10}^9}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right){\rm{ \times }}\left( {{\rm{1}}{\rm{.00 \mu C}}} \right){\rm{ \times }}\left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}{\rm{ C}}}}{{{\rm{1 \mu C}}}}} \right){\rm{ \times }}\left( {{\rm{2 \times 1}}{\rm{.00 \mu C}}} \right){\rm{ \times }}\left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}{\rm{ C}}}}{{{\rm{1 \mu C}}}}} \right)}}{{{{\left[ {{\rm{ - }}\left( {{\rm{5}}{\rm{.00 cm}}} \right){\rm{ \times }}\left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 2}}}}{\rm{ m}}}}{{{\rm{1 cm}}}}} \right)} \right]}^{\rm{2}}}}}\\{\rm{ = 7}}{\rm{.2 N}}\end{array}\)
The force of attraction between the charge located at \(x = 8.00{\rm{ cm}}\) and \(x = 11.00{\rm{ cm}}\) is,
\[{F_{11}} = \frac{{K\left( {2q} \right)\left( q \right)}}{{{{\left( {{r_8} - {r_{11}}} \right)}^2}}}\]
Substitute \(9 \times {10^9}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}\) for \(K\), \(1.00{\rm{ }}\mu C\) for \(q\), and \(8.00{\rm{ cm}}\) for \[{r_8}\], and \(11.00{\rm{ cm}}\) for \[{r_{11}}\]
\(\begin{array}{c}{F_{11}} = \frac{{\left( {9 \times {{10}^9}{\rm{ }}N \cdot {m^2}/{C^2}} \right) \times \left( {2 \times 1.00{\rm{ }}\mu C} \right) \times \left( {1.00{\rm{ }}\mu C} \right)}}{{{{\left[ {\left( {8.00{\rm{ }}cm} \right) - \left( {11.00{\rm{ }}cm} \right)} \right]}^2}}}\\ = \frac{{\left( {9 \times {{10}^9}{\rm{ }}N \cdot {m^2}/{C^2}} \right) \times \left( {2 \times 1.00{\rm{ }}\mu C} \right) \times \left( {1.00{\rm{ }}\mu C} \right)}}{{{{\left[ { - \left( {3.00{\rm{ }}cm} \right)} \right]}^2}}}\\ = \frac{{\left( {9 \times {{10}^9}{\rm{ }}N \cdot {m^2}/{C^2}} \right) \times \left( {2 \times 1.00{\rm{ }}\mu C} \right) \times \left( {\frac{{{{10}^{ - 6}}{\rm{ }}C}}{{1{\rm{ }}\mu C}}} \right) \times \left( {1.00{\rm{ }}\mu C} \right) \times \left( {\frac{{{{10}^{ - 6}}{\rm{ }}C}}{{1{\rm{ }}\mu C}}} \right)}}{{{{\left[ { - \left( {3.00{\rm{ }}cm} \right) \times \left( {\frac{{{{10}^{ - 2}}{\rm{ }}m}}{{1{\rm{ }}cm}}} \right)} \right]}^2}}}\\ = 20{\rm{ }}N\end{array}\)
The net force acting on the charge located at \(x = 8.00{\rm{ cm}}\) is,
\(F = \left| {{F_3} - {F_{11}}} \right|\)
Substitute \({\rm{7}}{\rm{.2 }}N\) for \({{\rm{F}}_{\rm{3}}}\) and \(20{\rm{ }}N\) for \({F_{11}}\),
\(\begin{array}{c}F = \left| {\left( {7.2{\rm{ N}}} \right) - \left( {20{\rm{ N}}} \right)} \right|\\ = 12.8{\rm{ N}}\end{array}\)
Hence, force on the charge located at \(x = 8.00{\rm{ cm}}\) is \({\rm{12}}{\rm{.8 }}N\).
94% of StudySmarter users get better grades.
Sign up for free