Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q41PE

Expert-verified
College Physics (Urone)
Found in: Page 665

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

What is the force on the charge located at \(x = 8.00{\rm{ }}cm\) in Figure 18.52(a) given that \(q = 1.00{\rm{ }}\mu C\)?

Figure 18.52 (a) Point charges located at \[{\bf{3}}.{\bf{00}},{\rm{ }}{\bf{8}}.{\bf{00}},{\rm{ }}{\bf{and}}{\rm{ }}{\bf{11}}.{\bf{0}}{\rm{ }}{\bf{cm}}\] along the x-axis. (b) Point charges located at \[{\bf{1}}.{\bf{00}},{\rm{ }}{\bf{5}}.{\bf{00}},{\rm{ }}{\bf{8}}.{\bf{00}},{\rm{ }}{\bf{and}}{\rm{ }}{\bf{14}}.{\bf{0}}{\rm{ }}{\bf{cm}}\] along the x-axis

The force on the charge located at \(x = 8.00{\rm{ cm}}\) is \({\rm{12}}{\rm{.8 }}N\).

See the step by step solution

Step by Step Solution

Step 1: Electrostatic force

The electrostatic force is a vector quantity. When a test charge is placed in a system of charges, each charge will exert electrostatic force on it. The resultant force on the test charge can be obtained by the vector sum of all the forces acting on it.

Step 2: Force Diagram

The electrostatic force between two charges \({q_1}\) and \({q_2}\) separated by a distance r is,

\(F = \frac{{K{q_1}{q_2}}}{{{r^2}}}\)

Here, \(K\) is the electrostatic force constant.

The force acting on the charge located at \(x = 8.00{\rm{ cm}}\) is represented as,

Force acting on the charge located at \(x = 8.00{\rm{ cm}}\)

Here, \({F_3}\) is the force of attraction due to charge at \(x = 3.00{\rm{ cm}}\) and \({F_{11}}\) is the force of attraction due to charge at \(x = 11.00{\rm{ cm}}\).

Step 3: Net force

The force of attraction between the charge located at \(x = 3.00{\rm{ cm}}\) and \(x = 8.00{\rm{ cm}}\) is,

\[{F_{11}} = \frac{{K\left( q \right)\left( {2q} \right)}}{{{{\left( {{r_3} - {r_8}} \right)}^2}}}\]

Substitute \(9 \times {10^9}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}\) for K, \(1.00{\rm{ }}\mu C\) for \(q\), \(3.00{\rm{ cm}}\) for \[{r_3}\] and \(8.00{\rm{ cm}}\) for \[{r_8}\],

\(\begin{array}{c}{{\rm{F}}_{\rm{3}}}{\rm{ = }}\frac{{\left( {9 \times {{10}^9}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right){\rm{ \times }}\left( {{\rm{1}}{\rm{.00 \mu C}}} \right){\rm{ \times }}\left( {{\rm{2 \times 1}}{\rm{.00 \mu C}}} \right)}}{{{{\left[ {\left( {{\rm{3}}{\rm{.00 cm}}} \right){\rm{ - }}\left( {{\rm{8}}{\rm{.00 cm}}} \right)} \right]}^{\rm{2}}}}}\\{\rm{ = }}\frac{{\left( {9 \times {{10}^9}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right){\rm{ \times }}\left( {{\rm{1}}{\rm{.00 \mu C}}} \right){\rm{ \times }}\left( {{\rm{2 \times 1}}{\rm{.00 \mu C}}} \right)}}{{{{\left[ {{\rm{ - }}\left( {{\rm{5}}{\rm{.00 cm}}} \right)} \right]}^{\rm{2}}}}}\\{\rm{ = }}\frac{{\left( {9 \times {{10}^9}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right){\rm{ \times }}\left( {{\rm{1}}{\rm{.00 \mu C}}} \right){\rm{ \times }}\left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}{\rm{ C}}}}{{{\rm{1 \mu C}}}}} \right){\rm{ \times }}\left( {{\rm{2 \times 1}}{\rm{.00 \mu C}}} \right){\rm{ \times }}\left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}{\rm{ C}}}}{{{\rm{1 \mu C}}}}} \right)}}{{{{\left[ {{\rm{ - }}\left( {{\rm{5}}{\rm{.00 cm}}} \right){\rm{ \times }}\left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 2}}}}{\rm{ m}}}}{{{\rm{1 cm}}}}} \right)} \right]}^{\rm{2}}}}}\\{\rm{ = 7}}{\rm{.2 N}}\end{array}\)

The force of attraction between the charge located at \(x = 8.00{\rm{ cm}}\) and \(x = 11.00{\rm{ cm}}\) is,

\[{F_{11}} = \frac{{K\left( {2q} \right)\left( q \right)}}{{{{\left( {{r_8} - {r_{11}}} \right)}^2}}}\]

Substitute \(9 \times {10^9}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}\) for \(K\), \(1.00{\rm{ }}\mu C\) for \(q\), and \(8.00{\rm{ cm}}\) for \[{r_8}\], and \(11.00{\rm{ cm}}\) for \[{r_{11}}\]

\(\begin{array}{c}{F_{11}} = \frac{{\left( {9 \times {{10}^9}{\rm{ }}N \cdot {m^2}/{C^2}} \right) \times \left( {2 \times 1.00{\rm{ }}\mu C} \right) \times \left( {1.00{\rm{ }}\mu C} \right)}}{{{{\left[ {\left( {8.00{\rm{ }}cm} \right) - \left( {11.00{\rm{ }}cm} \right)} \right]}^2}}}\\ = \frac{{\left( {9 \times {{10}^9}{\rm{ }}N \cdot {m^2}/{C^2}} \right) \times \left( {2 \times 1.00{\rm{ }}\mu C} \right) \times \left( {1.00{\rm{ }}\mu C} \right)}}{{{{\left[ { - \left( {3.00{\rm{ }}cm} \right)} \right]}^2}}}\\ = \frac{{\left( {9 \times {{10}^9}{\rm{ }}N \cdot {m^2}/{C^2}} \right) \times \left( {2 \times 1.00{\rm{ }}\mu C} \right) \times \left( {\frac{{{{10}^{ - 6}}{\rm{ }}C}}{{1{\rm{ }}\mu C}}} \right) \times \left( {1.00{\rm{ }}\mu C} \right) \times \left( {\frac{{{{10}^{ - 6}}{\rm{ }}C}}{{1{\rm{ }}\mu C}}} \right)}}{{{{\left[ { - \left( {3.00{\rm{ }}cm} \right) \times \left( {\frac{{{{10}^{ - 2}}{\rm{ }}m}}{{1{\rm{ }}cm}}} \right)} \right]}^2}}}\\ = 20{\rm{ }}N\end{array}\)

The net force acting on the charge located at \(x = 8.00{\rm{ cm}}\) is,

\(F = \left| {{F_3} - {F_{11}}} \right|\)

Substitute \({\rm{7}}{\rm{.2 }}N\) for \({{\rm{F}}_{\rm{3}}}\) and \(20{\rm{ }}N\) for \({F_{11}}\),

\(\begin{array}{c}F = \left| {\left( {7.2{\rm{ N}}} \right) - \left( {20{\rm{ N}}} \right)} \right|\\ = 12.8{\rm{ N}}\end{array}\)

Hence, force on the charge located at \(x = 8.00{\rm{ cm}}\) is \({\rm{12}}{\rm{.8 }}N\).

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Physics Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.