Americas
Europe
Q12PE
Expert-verifiedElectron guns are used in X-ray tubes. The electrons are accelerated through a relatively large voltage and directed onto a metal target, producing X-rays. (a) How many electrons per second strike the target if the current is 0.500 mA ? (b) What charge strikes the target in 0.750 s?
(a) About \(3.13 \times {10^{15}}\;{\rm{electron}}\)per second strike the target.
(b) The target has been stroked with a charge of \({\rm{3}}{\rm{.75 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}\;{\rm{C}}\).
The given data can be listed below as:
The electric charge is described as the charge carried by an electron. The electric charge is described as the product of the intensity and the time taken to reach to the current.
The equation of the number of electrons is expressed as:
\(N = \frac{{I{t_1}}}{{{Q_e}}}\)
Here, \(N\) is the number of electrons, l is the value of the current, \({t_1}\) is the time taken to strike the target that is one second and \({Q_e}\) is the charge of one electron.
Substitute the values in the above equation.
\(\begin{aligned}N &= \frac{{\left( {0.5 \times {{10}^{ - 3}}\,{\rm{A}}} \right)\left( {1\;{\rm{s}}} \right)}}{{1.6 \times {{10}^{ - 19}}\;{\rm{C/electron}}}}\\ & = \frac{{\left( {0.5 \times {{10}^{ - 3}}\,{\rm{A}} \cdot {\rm{s}}} \right)}}{{1.6 \times {{10}^{ - 19}}\;{\rm{C/electron}}}}\\ & = \frac{{\left( {0.5 \times {{10}^{ - 3}}\,{\rm{A}} \cdot {\rm{s}} \times \frac{{1\;{\rm{C}}}}{{1\;{\rm{A}} \cdot {\rm{s}}}}} \right)}}{{1.6 \times {{10}^{ - 19}}\;{\rm{C/electron}}}}\\ & = 3.13 \times {10^{15}}\;{\rm{electron}}\end{aligned}\)
Thus, about \(3.13 \times {10^{15}}\;{\rm{electron}}\) per second strike the target.
The equation of the charge is expressed as:
\(Q = It\)
Here, \(Q\) is the charge and t is the time taken to strike the target.
Substitute the values in the above equation.
\(\begin{aligned}Q = {\rm{0}}{\rm{.5 \times 1}}{{\rm{0}}^{{\rm{ - 3}}}}\;{\rm{A}} \times 0.750\;{\rm{s}}\\{\rm{ = 3}}{\rm{.75 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}\;{\rm{A}} \cdot {\rm{s}}\\{\rm{ = 3}}{\rm{.75 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}\;{\rm{A}} \cdot {\rm{s}} \times \frac{{1\;{\rm{C}}}}{{1\;{\rm{A}} \cdot {\rm{s}}}}\\ = {\rm{3}}{\rm{.75 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}\;{\rm{C}}\end{aligned}\)
Thus, the target has been stroked with a charge of \({\rm{3}}{\rm{.75 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}\;{\rm{C}}\).
94% of StudySmarter users get better grades.
Sign up for free