Suggested languages for you:

Americas

Europe

Q3PE

Expert-verified
Found in: Page 733

### College Physics (Urone)

Book edition 1st Edition
Author(s) Paul Peter Urone
Pages 1272 pages
ISBN 9781938168000

# What is the current when a typical static charge of $${\bf{0}}{\bf{.250}}\;{\bf{\mu C}}$$ moves from your finger to a metal doorknob in $${\bf{1}}{\bf{.00}}\;{\bf{\mu s}}$$ ?

The value of current moves from finger to metal doorknob is $$0.250\;{\rm{A}}$$.

See the step by step solution

## Step 1: Identification of the given data

The given data can be listed below as,

• The value of static electric charge is, $$Q = 0.250\;{\rm{\mu C}}$$.
• The value of time interval is, $$t = 1.00\;{\rm{\mu s}}$$.

## Step 2: Significance of electric current

An electric current is the flow of electrons when a potential difference is applied between two ends of a wire. When electrons flow through a material of high resistivity, then electrical energy would converts in the heat energy.

## Step 3: Determination of the current move from finger to metal doorknob

The relation to calculate the current move from finger to metal doorknob is expressed as,

\begin{aligned}Q = It\\I = \frac{Q}{t}\end{aligned}

Here, $$I$$ is the current move from finger to metal doorknob.

Substitute all the known values in the above equation.

\begin{aligned}I = \left( {\frac{{0.250\;{\rm{\mu C}}\; \times \frac{{{{10}^{ - 6}}\;{\rm{C}}}}{{1\;{\rm{\mu C}}}}}}{{1.00\;{\rm{\mu s}}\; \times \frac{{{{10}^{ - 6}}\;{\rm{s}}}}{{1\;{\rm{\mu s}}}}}}} \right)\left( {\frac{{1\;{\rm{A}}}}{{1\;{\rm{C/s}}}}} \right)\\ = 0.250\;{\rm{A}}\end{aligned}

Thus, the current move from finger to metal doorknob is $$0.250\;{\rm{A}}$$.