Americas
Europe
Q57PE
Expert-verifiedRadiation makes it impossible to stand close to a hot lava flow. Calculate the rate of heat transfer by radiation from \({\bf{1}}{\bf{.00}}\;{{\bf{m}}^{\bf{2}}}\) of 1200ºC fresh lava into 30.0ºC surroundings, assuming lava’s emissivity is 1.00.
The rate of heat transfer from lava by radiation is \({\bf{2}}{\bf{.664 \times 1}}{{\bf{0}}^{\bf{5}}}\;{\bf{J/s}}\).
The area of fireplace is \(A = 1\;{{\rm{m}}^2}\)
The temperature of fresh lava is \({T_1} = 1200^\circ {\rm{C}} = 1473\;{\rm{K}}\)
The temperature of surrounding is \({T_2} = 30^\circ {\rm{C}} = 303\;{\rm{K}}\)
The emissivity of lava is \(\varepsilon = 1\)
The radiant energy transfer is calculated by using the Stefan’s law. This law gives the energy transfer without any medium.
The rate of heat transfer from lava by radiation is given as:
\(Q = \varepsilon \sigma A\left( {T_1^4 - T_2^4} \right)\)
Here, \(\sigma \) is Stefan’s constant and its value is \(5.67 \times {10^{ - 8}}\;{\rm{W}} \cdot {{\rm{m}}^{ - 2}} \cdot {{\rm{K}}^4}\)
Substitute all the values in the above equation.
\(\begin{aligned}{}Q &= \left( 1 \right)\left( {5.67 \times {{10}^{ - 8}}\;{\rm{W}} \cdot {{\rm{m}}^{ - 2}} \cdot {{\rm{K}}^4}} \right)\left( {1\;{{\rm{m}}^2}} \right)\left( {{{\left( {1473\;{\rm{K}}} \right)}^4} - {{\left( {303\;{\rm{K}}} \right)}^4}} \right)\\Q &= 2.664 \times {10^5}\;{\rm{W}}\\Q &= \left( {2.664 \times {{10}^5}\;{\rm{W}}} \right)\left( {\frac{{1\;{\rm{J}}/{\rm{s}}}}{{1\;{\rm{W}}}}} \right)\\Q &= 2.664 \times {10^5}\;{\rm{J}}/{\rm{s}}\end{aligned}\)
Therefore, the rate of heat transfer from lava by radiation is \(2.664 \times {10^5}\;{\rm{J}}/{\rm{s}}\).
94% of StudySmarter users get better grades.
Sign up for free