Suggested languages for you:

Americas

Europe

Q29PE

Expert-verified
Found in: Page 33

### College Physics (Urone)

Book edition 1st Edition
Author(s) Paul Peter Urone
Pages 1272 pages
ISBN 9781938168000

# How many heartbeats are there in a lifetime?

The heartbeats in a lifetime is $$3.322 \times {10^9}{\rm{ beats}}$$.

See the step by step solution

## Step 1: Average life:

The average life of a person according to the world health organization $${\bf{2015}}$$report is $${\rm{79 years}}$$.

## Step 2: conversion of units:

Conversion of $${\rm{79 years}}$$ into minutes.

$$\begin{array}{c}{\rm{79 years}} = {\rm{79 years}} \times \frac{{365{\rm{ days}}}}{{1{\rm{ year}}}}\\ = \left( {{\rm{79}} \times 365} \right){\rm{ days}} \times \left( {\frac{{24{\rm{ hr}}}}{{1{\rm{ day}}}}} \right)\\ = \left( {{\rm{79}} \times 365 \times 24} \right){\rm{ hr}} \times \left( {\frac{{{\rm{60 min}}}}{{1{\rm{ hr}}}}} \right)\\ = 41522400{\rm{ min}}\end{array}$$

## Step 3: The heartbeats in a lifetime:

A heart beats in a minute is $$80$$ times. Therefore in $${\rm{79 years}}$$, it will beat,

$$\begin{array}{c}{\rm{Heart beats}} = 41522400{\rm{ min}} \times {\rm{80 }}{{{\rm{beats}}} \mathord{\left/ {\vphantom {{{\rm{beats}}} {{\rm{min}}}}} \right.} {{\rm{min}}}}\\ = 3.322 \times {10^9}{\rm{ beats}}\end{array}$$

Hence, the heartbeats in a lifetime is $$3.322 \times {10^9}{\rm{ beats}}$$.