 Suggested languages for you:

Europe

Answers without the blur. Sign up and see all textbooks for free! Q8PE

Expert-verified Found in: Page 33 ### College Physics (Urone)

Book edition 1st Edition
Author(s) Paul Peter Urone
Pages 1272 pages
ISBN 9781938168000 # The speed of sound is measured to be $${\rm{342 }}{{\rm{m}} \mathord{\left/ {\vphantom {{\rm{m}} {\rm{s}}}} \right. \\} {\rm{s}}}$$ on a certain day. What is this in km/h?

Hence, the speed of sound is $$1231.2{\rm{ }}{{km} \mathord{\left/ {\vphantom {{km} {hr}}} \right. \\} {hr}}$$.

See the step by step solution

## Step 1:

Meter is a SI unit of distance. It is abbreviated as a meter.

The relation between kilometers and meters is given as

$$1{\rm{ }}kilometer = 1000{\rm{ }}meters$$

Given data

Consider the given data as below.

The speed of sound =$$342{\rm{ }}{m \mathord{\left/ {\vphantom {m s}} \right. \\} s}$$

## Step 2: Conversion of units

The value of speed of sound in km/h can be expressed through conversion.

Converting 1 sec to 1 hour

$${1 \mathord{\left/ {\vphantom {1 {3600}}} \right.\\} {3600}} = 0.000277778{\rm{ }}hours$$

Therefore, we can imply 1m/sec

\begin{aligned}{}1{\rm{ }}{m \mathord{\left/ {\vphantom {m s}} \right. \\} s} = {\raise0.7ex\hbox{{{{10}^{ - 3}}{\rm{ }}km}} \!\mathord{\left/ {\vphantom {{{{10}^{ - 3}}{\rm{ }}km} {0.00027778{\rm{ }}hour}}}\right.\\}\!\lower0.7ex\hbox{{0.00027778{\rm{ }}hour}}}\\ = 599.99\times {10^{ - 3}}{\rm{ }}{{km} \mathord{\left/ {\vphantom {{km} {hr}}} \right. \\} {hr}}\end{aligned}$$342{\rm{ }}{m \mathord{\left/ {\vphantom {m s}} \right. \\} s} = 3599.99 \times {10^{ - 3}}{\rm{ }}{{km} \mathord{\left/ {\vphantom{{km} {hr}}} \right. \\} {hr}}$$

Therefore,$$1{\rm{ }}{m \mathord{\left/ {\vphantom {m s}} \right. \\} s} = 3.6{\rm{ }}{{km} \mathord{\left/ {\vphantom {{km} {hr}}} \right. \\} {hr}}$$

So, the velocity will be,

$$3.6{\rm{ }}x{\rm{ }}342 = 1231.2{\rm{ }}{{km} \mathord{\left/ {\vphantom {{km} {hr}}} \right. \\} {hr}}$$

## Step 3: Conclusion:

Hence, the speed of sound in $${{km} \mathord{\left/ {\vphantom {{km} {hr}}} \right. \\} {hr}}$$ is $$1231.2{\rm{ }}{{km} \mathord{\left/ {\vphantom {{km} {hr}}} \right. \\} {hr}}$$. ### Want to see more solutions like these? 