Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q9PE

Expert-verified
College Physics (Urone)
Found in: Page 11

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Tectonic plates are large segments of the Earth’s crust that move slowly. Suppose that one such plate has an average speed of\({\bf{4}}.{\bf{0}}{\rm{ }}{{{\rm{cm}}} \mathord{\left/ {\vphantom {{{\rm{cm}}} {{\rm{year}}}}} \right. \\} {{\rm{year}}}}\). (a) What distance does it move in \({\rm{1 s}}\) at this speed? (b) What is its speed in kilometers per million years?

  1. The distance does it move in \({\rm{1 s}}\) at given speed is \(d = 1.268{\rm{ }}nm\)
  2. What is its speed in kilometers per million years is \(40.0{\rm{ }}{{km} \mathord{\left/{\vphantom {{km} {millon{\rm{ }}years}}} \right. \\} {millon{\rm{ }}years}}\).
See the step by step solution

Step by Step Solution

Step 1: A concept of velocity and distance.

Speed is a measure of the distance traveled by objects over a period of time. Here is a word count that shows the relationship between distance, speed and time: Speed is equal to the distance traveled divided by the time it takes to get there.

Given data

Consider the given data as below.

The average speed of Tectonic plates is \({\rm{4}}{\rm{.0 }}{{{\rm{cm}}} \mathord{\left/ {\vphantom {{{\rm{cm}}} {{\rm{year}}}}} \right. \\} {{\rm{year}}}}\).

Step 2: (a) Distance in \({\rm{1 sec}}\):

The distance defines by using the following formula.

\(d = vt\) ….. (1)

Here, \(d\) is the distance, \(v\) is the velocity, and \(t\) is the time.

The conversion if year to second is,

\(\begin{array}{c}1{\rm{ }}year = 1{\rm{ }}year \times \frac{{365{\rm{ }}days}}{{1{\rm{ }}year}} \times \frac{{24{\rm{ }}hour}}{{1{\rm{ }}day}} \times \frac{{60{\rm{ }}\min }}{{1{\rm{ }}hour}} \times \frac{{60{\rm{ }}\sec }}{{1{\rm{ }}\min }}\\ = 31536000{\rm{ }}\sec \end{array}\)

Substitute \({\rm{4}}{\rm{.0 }}{{{\rm{cm}}} \mathord{\left/

{\vphantom {{{\rm{cm}}} {{\rm{year}}}}} \right.

\kern-\nulldelimiterspace} {{\rm{year}}}}\) for \(v\) and \(\frac{1}{{31536000}}{\rm{ }}\sec \) for \(t\) in the above equation.

\(\begin{array}{c}d = 4.0 \times \frac{1}{{31536000}}cm\\ = 1.268 \times {10^{ - 7}}{\rm{ }}cm\\ = 1.268 \times {10^{ - 7}}{\rm{ }}cm\left( {\frac{{{{10}^{ - 2}}{\rm{ }}m}}{{1.0{\rm{ }}cm}}} \right)\\ = 1.268 \times {10^{ - 9}}{\rm{ }}m\end{array}\)

The relation between nanometer and meter is as follows.

\(1{\rm{ }}nm = {10^{ - 9}}{\rm{ }}m\)

Therefore, the distance will be,

\(d = 1.268{\rm{ }}nm\)

Step 3: (b) Velocity in

\({{{\rm{km}}} \mathord{\left/ {\vphantom {{{\rm{km}}} {{\rm{million yr}}}}} \right. \\} {{\rm{million yr}}}}\) .

The relation between year and million years is as follow.

\(1{\rm{ }}year = 1{\rm{ }} \times {10^{ - 6}}million{\rm{ }}yr\)

Therefore, the speed of the tectonic plates is,

\(\begin{aligned}{c}v = 4.0{\rm{ }}{{cm} \mathord{\left/{\vphantom {{cm} {year}}} \right.\\} {year}}\\ = \left( {4.0{\rm{ }}\frac{{cm}}{{year}} \times \frac{{1 \times {{10}^{ - 5}}{\rm{ }}km}}{{1{\rm{ }}cm}}} \right) \times \left( {\frac{{1{\rm{ }}year}}{{1 \times {{10}^{ - 6}}{\rm{ }}millon{\rm{ }}yr}}} \right)\\ = 4.0 \times {10^1}{\rm{ }}{{km} \mathord{\left/{\vphantom {{km} {millon{\rm{ }}years}}} \right. \\} {millon{\rm{ }}years}}\\ = 40.0{\rm{ }}{{km} \mathord{\left/ {\vphantom {{km} {millon{\rm{ }}years}}} \right. \\} {millon{\rm{ }}years}}\end{aligned}\)

Step 4: Conclusion:

  1. The distance does it move in \({\rm{1 s}}\) at given speed is \(d = 1.268{\rm{ }}nm\).
  2. What is its speed in kilometers per million years is \(40.0{\rm{ }}{{km} \mathord{\left/ {\vphantom {{km} {millon{\rm{ }}years}}} \right. \\} {millon{\rm{ }}years}}\).

Most popular questions for Physics Textbooks

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Physics Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.