Americas
Europe
Q14PE
Expert-verifiedWhat is the maximum velocity of electrons ejected from a material by \(80\,{\rm{nm}}\) photons, if they are bound to the material by \(4.73\,{\rm{eV}}\)?
The maximum velocity of electrons \(v = 1.95 \times {10^6}\,{\rm{m}}{{\rm{s}}^{{\rm{ - 1}}}}\)
From equation, the maximum kinetic energy of the ejected electron from any metal surface is
\(K{E_e} = hf - BE\) ...(1)
Where \(h = 6.626 \times {10^{ - 34}}\,{\rm{Js}}\) is Planck's constant,
\(f\)is the frequency of the incident photon,
\(hf\)is the photon's energy, and
The relation between frequency \(f\)and wavelength \(\lambda \)is given by
\(f = \frac{c}{\lambda }\) ...(2)
Therefore, from the above equation, we get
\(K{E_e} = \frac{{hc}}{\lambda } - BE\) ...(3)
Now as we know the kinetic energy of an object having mass \(m\) and velocity v is given by
\(K{E_e} = \frac{1}{2}m{v^2}\) ...(4)
Here, binding energy of the electron in material is
\(BE = 4.73\,{\rm{eV}}\)
Since, we know
\(1.00\;\,{\rm{J}} = 6.242 \times {10^{18}}\,{\rm{eV}}\)
Therefore we get
\(\begin{aligned}{}BE &= 4.73\,{\rm{eV}} \times \frac{{1.00\,{\rm{J}}}}{{6.242 \times {{10}^{18}}\,{\rm{eV}}}}\\ &= 7.57 \times {10^{ - 19}}\,{\rm{J}}\end{aligned}\)
Wavelength of the ejected electron is
\(\begin{aligned}{}\lambda &= 80\,{\rm{nm}}\\ &= 80 \times {10^{ - 9}}\,{\rm{m}}\end{aligned}\)
Mass of the electron is
\(m = 9.11 \times {10^{ - 31}}\,{\rm{kg}}\)
Now from equation, the kinetic energy of the ejected electron is
\(K{E_e} = \frac{{hc}}{\lambda } - BE\)
Substitute all the value in the above equation
\(\begin{aligned}{}K{E_e} &= \frac{{6.626 \times {{10}^{ - 34}}\,{\rm{Js}} \times 3.00 \times {{10}^8}\,{\rm{m}}{{\rm{s}}^{{\rm{ - 1}}}}}}{{80 \times {{10}^{ - 9}}\,{\rm{m}}}} - 7.57 \times {10^{ - 19}}\,{\rm{J}}\\ &= 1.73 \times {10^{ - 18}}\,{\rm{J}}\end{aligned}\)
Hence, from equation, the velocity of the ejected electron is
\(v = \sqrt {\frac{{2K{E_e}}}{m}} \)
Substitute all the value in the above equation
\(\begin{aligned}{}v &= \sqrt {\frac{{2 \times 1.73 \times {{10}^{ - 18}}\,{\rm{J}}}}{{9.11 \times {{10}^{ - 31}}\,{\rm{kg}}}}} \\ &= 1.95 \times {10^6}\,{\rm{m}}{{\rm{s}}^{{\rm{ - 1}}}}\end{aligned}\)
Hence, \(v = 1.95 \times {10^6}\,{\rm{m}}{{\rm{s}}^{{\rm{ - 1}}}}\)
94% of StudySmarter users get better grades.
Sign up for free