Americas
Europe
Q49PE
Expert-verifiedErnest Rutherford (the first New Zealander to be awarded the Nobel rize in Chemistry) demonstrated that nuclei were very small and dense by scattering helium-4 nuclei \(\left( {{}^4He} \right)\) from gold-197 nuclei \(\left( {{}^{197}Au} \right)\). The energy of the incoming helium nucleus was\(8.00 \times {10^{ - 13}}\;{\rm{J}}\), and the masses of the helium and gold nuclei were \(6.68 \times {10^{ - 27}}\;{\rm{kg}}\) and\(3.29 \times {10^{ - 25}}\;{\rm{kg}}\), respectively (note that their mass ratio is 4 to 197). (a) If a helium nucleus scatters to an angle of \(120^\circ \) during an elastic collision with a gold nucleus, calculate the helium nucleus’s final speed and the final velocity (magnitude and direction) of the gold nucleus. (b) What is the final kinetic energy of the helium nucleus?
A final velocity is defined as the final speed of a moving object with an initial velocity and acceleration over some time.
The initial velocity of Helium is,
\(\begin{aligned}{u_{He}} = \sqrt {\dfrac{{2{K_{He}}}}{{{m_{He}}}}} \\ = \sqrt {\dfrac{{2 \times 8 \times {{10}^{ - 13}}}}{{6.68 \times {{10}^{ - 27}}}}} \\ = 1.54 \times {10^7}\;{\rm{m/s}}\end{aligned}\)
From the conservation of momentum along both the axes we get,
\(\begin{aligned}{{m}_{{He}}}{{u}_{{He}}}{ = }{{m}_{{He}}}{{v}_{{He}}}{cos}{{\theta }_{{He}}}{ + }{{m}_{{Au}}}{{v}_{{Au}}}{cos}{{\theta }_{{Au}}}\;....{(1)}\\{0 = }{{m}_{{He}}}{{v}_{{He}}}{sin}{{\theta }_{{He}}}{ + }{{m}_{{Au}}}{{v}_{{Au}}}{sin}{{\theta }_{{Au}}}\;....{(2)}\end{aligned}\)
Applying conservation of kinetic energy we get,
\(\begin{aligned}\dfrac{1}{2}{m_{He}}{u_{He}}^2 = \dfrac{1}{2}{m_{He}}{v_{He}}^2 + \dfrac{1}{2}{m_{Au}}{v_{Au}}^2\\{v_{Au}}^2 = \dfrac{{{m_{He}}\left( {{u_{He}}^2 - {v_{He}}^2} \right)}}{{{m_{Au}}}}\end{aligned}\)
Combining these equations we get,
\(\left( {{{m}_{{He}}}^{2}{ + }{{m}_{{Au}}}{{m}_{{He}}}} \right){{v}_{{He}}}^{2}{ - }\left[ {{2}{{m}_{{He}}}^{2}{{u}_{{He}}}{cos}{{\theta }_{{He}}}} \right]{{v}_{{He}}}{ = }\left( {{{m}_{{Au}}}{{m}_{{He}}}{ - }{{m}_{{He}}}^{2}} \right){{u}_{{He}}}^{2}\)
Substituting the values,
\(\begin{aligned}\left[ {{{\left( {{6}{.68 \times 1}{{0}^{{ - 27}}}} \right)}^{2}}{ + }\left( {{3}{.29 \times 1}{{0}^{{ - 23}}}} \right)\left( {{6}{.68 \times 1}{{0}^{{ - 27}}}} \right)} \right]{{v}_{{He}}}^{2}{ - }\left[ {{2 \times }{{\left( {{6}{.68 \times 1}{{0}^{{ - 27}}}} \right)}^{2}}\left( {{1}{.54 \times 1}{{0}^{7}}} \right){cos120^\circ }} \right]{{v}_{{He}}}\\{ = }\left[ {\left( {{3}{.29 \times 1}{{0}^{{ - 23}}}} \right)\left( {{6}{.68 \times 1}{{0}^{{ - 27}}}} \right){ - }{{\left( {{6}{.68 \times 1}{{0}^{{ - 27}}}} \right)}^{2}}} \right]{\left( {{1}{.54 \times 1}{{0}^{7}}} \right)^{2}}\end{aligned}\)
The velocity is,
\(\begin{aligned}{{v}_{{He}}}{ = }\dfrac{{{ - }\left( {{6}{.90599 \times 1}{{0}^{{ - 46}}}} \right){ + }\sqrt {{{\left( {{6}{.90599 \times 1}{{0}^{{ - 46}}}} \right)}^{2}}{ + 4}\left( {{2}{.24234 \times 1}{{0}^{{ - 51}}}} \right)\left( {{5}{.1571 \times 1}{{0}^{{ - 37}}}} \right)} }}{{{2}\left( {{2}{.34234 \times 1}{{0}^{{ - 51}}}} \right)}}\;{m/s}\\{ = 1}{.50 \times 1}{{0}^{7}}\;{m/s}\end{aligned}\)
The final velocity of gold is,
\(\begin{array}{c}{v_{Au}} = \sqrt {\frac{{\left( {6.68 \times {{10}^{ - 27}}} \right){{\left( {1.547 \times {{10}^7}} \right)}^2} - {{\left( {1.50 \times {{10}^7}} \right)}^2}}}{{3.29 \times {{10}^{ - 25}}}}} \;{m/s}\\ = 5.35 \times {10^5}\;{\rm{m/s}}\end{array}\)
The angle of the gold is,
\(\begin{array}{c}\sin {\theta _{Au}} = \frac{{{m_{He}}{v_{He}}\sin {\theta _{He}}}}{{{m_{Au}}{v_{Au}}}}\\\sin {\theta _{Au}} = \frac{{\left( {6.68 \times {{10}^{ - 27}}} \right)\left( {1.547 \times {{10}^7}} \right)\sin 120^\circ }}{{\left( {3.29 \times {{10}^{ - 25}}} \right)\left( {5.3 \times {{10}^5}} \right)}}\\{\theta _{Au}} = 29.7^\circ \end{array}\)
The kinetic energy of He is,
\(\begin{aligned}{}\frac{1}{2}{m_{He}}{v_{He}}^2\\ &= \frac{1}{2} \times \left( {6.68 \times {{10}^{ - 27}}} \right){\left( {1.547 \times {{10}^7}} \right)^2}\;{\rm{J}}\\ &= 7.53 \times {10^{ - 13}}\;{\rm{J}}\end{aligned}\)
94% of StudySmarter users get better grades.
Sign up for free