Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration


College Physics (Urone)
Found in: Page 291

Answers without the blur.

Just sign up for free and you're in.


Short Answer

Two cars collide at an icy intersection and stick together afterward. The first car has a mass of \(1200 kg\)and is approaching at \(8.00\;{\rm{m/s}}\)due south. The second car has a mass of \(850 kg\)and is approaching at \(17.0\;{\rm{m/s}}\)due west. (a) Calculate the final velocity (magnitude and direction) of the cars. (b) How much kinetic energy is lost in the collision? (This energy goes into deformation of the cars.) Note that because both cars have an initial velocity, you cannot use the equations for conservation of momentum along the x -axis and y -axis; instead, you must look for other simplifying aspects.

(a)The final velocity of the ball is\(8.5\;{\rm{m/s}}\) at an angle\(33.6^\circ \)with X-axis.

(b)The loss of energy is\(87819.5\;{\rm{J}}\).

See the step by step solution

Step by Step Solution

Step 1: Definition of Final Velocity

A final velocity is defined as the final speed of a moving object with an initial velocity and acceleration over some time.

The mass of the 1st car is m1=1200kg

The mass of the 2nd car is\({m_2} = 850\;{\rm{kg}}\).

The velocity of the first car is\({v_1} = 8.00\;{\rm{m/s}}\).

The velocity of the 2nd car is\({v_2} = 17.0\;{\rm{m/s}}\).

Step 2: Calculation of final velocity


Using the conservation of momentum along horizontal direction we get,

\(\begin{array}{c}{m_1}{v_1} + {m_2}{v_2} = \left( {{m_1} + {m_2}} \right)v\\v = \frac{{{m_1}{v_1} - {m_2}{v_2}}}{{\left( {{m_1} + {m_2}} \right)}}\end{array}\)

Substituting the values we get,

\(\begin{array}{c}v = \frac{{1200 \times \left( { - 8.00\;\hat j} \right) + 850 \times \left( { - 17.0\;\hat i} \right)}}{{1200 + 850}}\;{\rm{m/s}}\\ = \left( { - 7.05\;\hat i - 4.68\;\hat j} \right)\;{\rm{m/s}}\end{array}\)

The speed is,

\(\begin{array}{c}v = \sqrt {{{\left( {7.05} \right)}^2} + {{\left( {4.68} \right)}^2}} \;{\rm{m/s}}\\ = 8.5\;{\rm{m/s}}\end{array}\)

The angle with the X-axis is,

\(\begin{array}{c}\theta = {\tan ^{ - 1}}\frac{{ - 4.68}}{{ - 7.05}}\\ = 33.6^\circ \end{array}\)

Step 3: Calculation of kinetic energy


The initial kinetic energy before collision is,

\(\begin{array}{c}{\left( {KE} \right)_i} = \left[ {\frac{1}{2} \times 1200 \times {8^2} + \frac{1}{2} \times 850 \times {{17}^2}} \right]\;{\rm{J}}\\ = 161225\;{\rm{J}}\end{array}\)

The final kinetic energy is,

\(\begin{array}{c}{\left( {KE} \right)_f} = \frac{1}{2} \times \left( {1200 + 850} \right) \times {8.5^2}\;{\rm{J}}\\ = 73405.5\;{\rm{J}}\end{array}\)

The loss of kinetic energy is,

\(\begin{array}{c}\Delta E = \left[ {161225 - 73405.5} \right]\;{\rm{J}}\\ = 87819.5\;J\end{array}\)

Therefore loss of kinetic energy is, 87819.5J

Most popular questions for Physics Textbooks


Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Physics Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.