Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q53PE

Expert-verified
College Physics (Urone)
Found in: Page 291

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Antiballistic missiles (ABMs) are designed to have very large accelerations so that they may intercept fast-moving incoming missiles in the short time available. What is the takeoff acceleration of a \(10,000\;kg\) ABM that expels \(196\;kg\) of gas per second at an exhaust velocity of\(2.50 \times {10^3}\;kg\)?

The takeoff acceleration is \({\rm{39}}{\rm{.2}}\;{\rm{m/}}{{\rm{s}}^{\rm{2}}}\).

See the step by step solution

Step by Step Solution

Step 1: Definition of Acceleration

The rate at which velocity changes is referred to as acceleration.

Step 1: Given Data

The mass of ABM is \({{\rm{m}}_{\rm{1}}}{\rm{ = 10000}}\;{\rm{kg}}\).

The expulsion rate is \(\dfrac{{{\rm{dm}}}}{{{\rm{dt}}}}{\rm{ = 196}}\;{\rm{kg/s}}\).

The exhaust velocity of ABM is \({{\rm{v}}_{\rm{g}}}{\rm{ = 2}}{\rm{.50 \times 1}}{{\rm{0}}^{\rm{3}}}\;{\rm{m/s}}\).

Step 2: Calculation of Acceleration

Using the conservation of momentum along vertical direction we get,

\({\rm{Fdt = }}{{\rm{P}}_{\rm{f}}}{\rm{ - }}{{\rm{P}}_{\rm{i}}}\)

So,

\(\begin{aligned}{\rm{ - mg = m}}\dfrac{{{\rm{dv}}}}{{{\rm{dt}}}}{\rm{ - }}{{\rm{v}}_{\rm{g}}}\dfrac{{{\rm{dm}}}}{{{\rm{dt}}}}\\\dfrac{{{\rm{dv}}}}{{{\rm{dt}}}}{\rm{ = }}\dfrac{{{{\rm{v}}_{\rm{g}}}\dfrac{{{\rm{dm}}}}{{{\rm{dt}}}}{\rm{ - mg}}}}{{\rm{m}}}\end{aligned}\)

Substituting the values we get,

\(\dfrac{{dv}}{{dt}} = \,a\, = \dfrac{{\left( {{\rm{2}}{\rm{.50 \times 1}}{{\rm{0}}^{\rm{3}}}\;{\rm{m/s}}} \right){\rm{ \times }}\left( {{\rm{196}}\,{\rm{kg/s}}} \right){\rm{ - }}\left( {{\rm{10000}}\,{\rm{kg}}} \right){\rm{ \times }}\left( {{\rm{9}}{\rm{.8}}\,{\rm{m/}}{{\rm{s}}^2}} \right)}}{{\left( {{\rm{10000}}\,{\rm{kg}}} \right)}}\)

\({\rm{ = 39}}{\rm{.2}}\;{\rm{m/}}{{\rm{s}}^{\rm{2}}}\)

Hence, the required acceleration is \({\rm{39}}{\rm{.2}}\;{\rm{m/}}{{\rm{s}}^{\rm{2}}}\).

Recommended explanations on Physics Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.