Americas
Europe
Q13PE
Expert-verifiedThe warning tag on a lawn mower states that it produces noise at a level of \(91.0\;{\rm{dB}}\). What is this in watts per meter squared?
The intensity is \(1.3 \times {10^{ - 3}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}\).
The intensity level is \(91.0\;{\rm{dB}}\).
The sound intensity results in loudness, which is the sound intensity ratio with the threshold. The intensity increases with the decrease in speed of sound in a medium.
Use the intensity level,
\({\rm{dB}} = 10\log \frac{I}{{{{10}^{ - 12}}}}\)
Substituting the values,
\(\begin{align}91.0 &= 10\log \frac{I}{{{{10}^{ - 12}}}}\\\frac{{91.0}}{{10}} &= \log \frac{I}{{{{10}^{ - 12}}}}\\{10^{9.1}} &= \frac{I}{{{{10}^{ - 12}}}}\\I &= {10^{9.1}} \times {10^{ - 12}}\\I &= 1.3 \times {10^{ - 3}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}\end{align}\)
The noise in watts per meter squared is \(1.3 \times {10^{ - 3}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}\)
94% of StudySmarter users get better grades.
Sign up for free