Americas
Europe
Q17.3-29PE
Expert-verifiedLoudspeakers can produce intense sounds with surprisingly small energy input in spite of their low efficiencies. Calculate the power input needed to produce a \(90.0\;{\rm{dB}}\) sound intensity level for a \({\rm{12}}{\rm{.0}}\;{\rm{cm}}\)diameter speaker that has an efficiency of \(1.00\% \). (This value is the sound intensity level right at the speaker.)
The input power is\(1.767 \times {10^{ - 3}}\;{\rm{W}}\).
The intensity of sound depends on the amplitude, and the loudness is the effect of intensity on human ears.
The sound intensity is\(90.0\;{\rm{dB}}\).
The diameter of the speaker is\(12.0\;{\rm{cm}}\).
The efficiency is\(1.00\% \).
The intensity of the unaided hearing is,
\({{\rm{d}}_{\rm{1}}}{\rm{ = 10log}}\frac{{{{\rm{I}}_{\rm{0}}}}}{{{\rm{1}}{{\rm{0}}^{{\rm{12}}}}}}\)and\({I_0} = {10^{12}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}\).
Now,
\(\begin{array}{c}90 = 10\log \frac{{{I_0}}}{{{{10}^{ - 12}}}}\\9 = \log \frac{{{I_0}}}{{{{10}^{ - 12}}}}\\{I_0} = {10^9} \times {10^{ - 12}}\\{I_0} = {10^{ - 3}}\end{array}\)
The power output is,
\(\begin{array}{c}P = {I_0}A\\P = {10^{ - 3}} \times \pi \times {\left[ {\frac{{0.15}}{2}} \right]^2}\\P = 1.767 \times {10^{ - 5}}\;{\rm{W}}\end{array}\)
The input power is,
\(\begin{array}{c}P' = \frac{P}{{efficiency}}\\ = \frac{{1.767 \times {{10}^{ - 5}}}}{{0.01}}\\ = 1.767 \times {10^{ - 3}}\;{\rm{W}}\end{array}\)
The input power is\(1.767 \times {10^{ - 3}}\;{\rm{W}}\).
94% of StudySmarter users get better grades.
Sign up for free