Americas
Europe
Q17PE
Expert-verifiedShow that an intensity of \({10^{ - 12}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}\) is the same as \({10^{ - 16}}\;{\rm{W/c}}{{\rm{m}}^{\rm{2}}}\) ?
The intensities are equal.
The intensity of the first sound is \({10^{ - 12}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}\)
The another intensity is \({10^{ - 16}}\;{\rm{W/c}}{{\rm{m}}^{\rm{2}}}\).
The sound intensity is the power passing perpendicular to the given per second. The intensity has the unit Watt per meter square.
The intensity of the first sound is,
\(\begin{align}{10^{ - 12}}\;W/{m^2}\\ &= \frac{{{{10}^{ - 12}}\;{\rm{W}}}}{{100 \times 100\;{\rm{c}}{{\rm{m}}^{\rm{2}}}}}\\ &= {10^{ - 12}} \times {10^{ - 4}}\;{\rm{W/c}}{{\rm{m}}^{\rm{2}}}\\ &= {10^{ - 16}}\;{\rm{W/c}}{{\rm{m}}^{\rm{2}}}\end{align}\)
Hence, both the sounds have the same intensity.
94% of StudySmarter users get better grades.
Sign up for free