Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q19PE

Expert-verified
College Physics (Urone)
Found in: Page 629

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Question: (a) What is the intensity of a sound that has a level \(7.00\;{\rm{dB}}\) lower than a\(4.00 \times {10^{ - 9}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}\)sound? (b) What is the intensity of a sound that is \(3.00\;{\rm{dB}}\)higher than a \(4.00 \times {10^{ - 9}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}\)sound?

  1. The intensity is\(7.94 \times {10^{ - 10}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}\).

b. The intensity is\(7.94 \times {10^{ - 9}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}\)

See the step by step solution

Step by Step Solution

Step1: Given Data

The intensity of a sound has a level \(7.00\;{\rm{dB}}\) lower than a\(4.00 \times {10^{ - 9}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}\).

The intensity of another sound has a level \(3.00\;{\rm{dB}}\) higher than a\(4.00 \times {10^{ - 9}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}\).

Step 2: Loudness

The loudness is the ratio of the sound intensity to the threshold level. It is in the unit of Bel or dB. The loudness refers to the effect of intensity.

Step 3: Calculation of the intensity of the first sound

(a)

Use the intensity of the first sound as ,

\(\begin{align}d &= 10\log \frac{{4.00 \times {{10}^{ - 9}}}}{{{{10}^{ - 12}}}}\\d &= 36\;{\rm{dB}}\end{align}\)

Now the intensity level of the sound is,

\(\begin{align}I &= 36 - 7\\ &= 29\;{\rm{dB}}\end{align}\)

The intensity of the sound is,

\(\begin{align}29 &= 10\log \frac{I}{{{{10}^{ - 12}}}}\\2.9 &= \log \frac{I}{{{{10}^{ - 12}}}}\\I &= {10^{2.9}} \times {10^{ - 12}}\\I &= 7.94 \times {10^{ - 10}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}\end{align}\)

The intensity of a sound is \(7.94 \times {10^{ - 10}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}\)

Step 4: Calculation of the intensity of the second sound

(b)

Now the intensity level of the sound is,

\(36 + 3 = 39\;{\rm{dB}}\)

The intensity of the sound is,

\(\begin{align}39 &= 10\log \frac{I}{{{{10}^{ - 12}}}}\\3.9 &= \log \frac{I}{{{{10}^{ - 12}}}}\\I &= {10^{3.9}} \times {10^{ - 12}}\\I &= 7.94 \times {10^{ - 9}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}\end{align}\)

Therefore, the intensity of a sound is \(7.94 \times {10^{ - 9}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}\)

Recommended explanations on Physics Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.