### Select your language

Suggested languages for you:

Americas

Europe

Q19PE

Expert-verified
Found in: Page 629

### College Physics (Urone)

Book edition 1st Edition
Author(s) Paul Peter Urone
Pages 1272 pages
ISBN 9781938168000

# Question: (a) What is the intensity of a sound that has a level $$7.00\;{\rm{dB}}$$ lower than a$$4.00 \times {10^{ - 9}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}$$sound? (b) What is the intensity of a sound that is $$3.00\;{\rm{dB}}$$higher than a $$4.00 \times {10^{ - 9}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}$$sound?

1. The intensity is$$7.94 \times {10^{ - 10}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}$$.

b. The intensity is$$7.94 \times {10^{ - 9}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}$$

See the step by step solution

## Step1: Given Data

The intensity of a sound has a level $$7.00\;{\rm{dB}}$$ lower than a$$4.00 \times {10^{ - 9}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}$$.

The intensity of another sound has a level $$3.00\;{\rm{dB}}$$ higher than a$$4.00 \times {10^{ - 9}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}$$.

## Step 2: Loudness

The loudness is the ratio of the sound intensity to the threshold level. It is in the unit of Bel or dB. The loudness refers to the effect of intensity.

## Step 3: Calculation of the intensity of the first sound

(a)

Use the intensity of the first sound as ,

\begin{align}d &= 10\log \frac{{4.00 \times {{10}^{ - 9}}}}{{{{10}^{ - 12}}}}\\d &= 36\;{\rm{dB}}\end{align}

Now the intensity level of the sound is,

\begin{align}I &= 36 - 7\\ &= 29\;{\rm{dB}}\end{align}

The intensity of the sound is,

\begin{align}29 &= 10\log \frac{I}{{{{10}^{ - 12}}}}\\2.9 &= \log \frac{I}{{{{10}^{ - 12}}}}\\I &= {10^{2.9}} \times {10^{ - 12}}\\I &= 7.94 \times {10^{ - 10}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}\end{align}

The intensity of a sound is $$7.94 \times {10^{ - 10}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}$$

## Step 4: Calculation of the intensity of the second sound

(b)

Now the intensity level of the sound is,

$$36 + 3 = 39\;{\rm{dB}}$$

The intensity of the sound is,

\begin{align}39 &= 10\log \frac{I}{{{{10}^{ - 12}}}}\\3.9 &= \log \frac{I}{{{{10}^{ - 12}}}}\\I &= {10^{3.9}} \times {10^{ - 12}}\\I &= 7.94 \times {10^{ - 9}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}\end{align}

Therefore, the intensity of a sound is $$7.94 \times {10^{ - 9}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}$$