Americas
Europe
Q19PE
Expert-verifiedQuestion: (a) What is the intensity of a sound that has a level \(7.00\;{\rm{dB}}\) lower than a\(4.00 \times {10^{ - 9}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}\)sound? (b) What is the intensity of a sound that is \(3.00\;{\rm{dB}}\)higher than a \(4.00 \times {10^{ - 9}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}\)sound?
b. The intensity is\(7.94 \times {10^{ - 9}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}\)
The intensity of a sound has a level \(7.00\;{\rm{dB}}\) lower than a\(4.00 \times {10^{ - 9}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}\).
The intensity of another sound has a level \(3.00\;{\rm{dB}}\) higher than a\(4.00 \times {10^{ - 9}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}\).
(a)
Use the intensity of the first sound as ,
\(\begin{align}d &= 10\log \frac{{4.00 \times {{10}^{ - 9}}}}{{{{10}^{ - 12}}}}\\d &= 36\;{\rm{dB}}\end{align}\)
Now the intensity level of the sound is,
\(\begin{align}I &= 36 - 7\\ &= 29\;{\rm{dB}}\end{align}\)
The intensity of the sound is,
\(\begin{align}29 &= 10\log \frac{I}{{{{10}^{ - 12}}}}\\2.9 &= \log \frac{I}{{{{10}^{ - 12}}}}\\I &= {10^{2.9}} \times {10^{ - 12}}\\I &= 7.94 \times {10^{ - 10}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}\end{align}\)
The intensity of a sound is \(7.94 \times {10^{ - 10}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}\)
(b)
Now the intensity level of the sound is,
\(36 + 3 = 39\;{\rm{dB}}\)
The intensity of the sound is,
\(\begin{align}39 &= 10\log \frac{I}{{{{10}^{ - 12}}}}\\3.9 &= \log \frac{I}{{{{10}^{ - 12}}}}\\I &= {10^{3.9}} \times {10^{ - 12}}\\I &= 7.94 \times {10^{ - 9}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}\end{align}\)
Therefore, the intensity of a sound is \(7.94 \times {10^{ - 9}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}\)
94% of StudySmarter users get better grades.
Sign up for free