Americas
Europe
Q1PE
Expert-verifiedWhat is γ? (a) if v=\({\bf{0}}.{\bf{250c}}\)? (b) If v=\({\bf{0}}.{\bf{500c}}\)
The Relativistic factor γ is
(a) γ=\(1.033\)
(b) γ=\(1.155\)
The relativistic factor,
\(\gamma = \frac{1}{{\sqrt {1 - {{\left( {\frac{v}{c}} \right)}^2}} }}\)
Where v is the velocity relative to an observer and c= \({\rm{3}}{\rm{.00}}\) X \({10^8}\) \({\rm{m}}{{\rm{s}}^{{\rm{ - 1}}}}\)
(a) Here given that the velocity relative to an observer is, v=0.250 c
\(\begin{align}\gamma &= \frac{1}{{\sqrt {1 - {{\left( {\frac{v}{c}} \right)}^2}} }}\\ &= \frac{1}{{\sqrt {1 - {{\left( {\frac{{0.250c}}{c}} \right)}^2}} }}\\ &= \frac{1}{{\sqrt {1 - {{(0.250)}^2}} }}\\ &= \frac{1}{{\sqrt {1 - 0.0625} }}\\ &= 1.033\end{align}\)
Hence, the relativistic factor is 1.033.
(b)Here given that the velocity relative to an observer is, v=\(0.500\)c
\(\begin{align}\gamma &= \frac{1}{{\sqrt {1 - {{\left( {\frac{v}{c}} \right)}^2}} }}\\ &= \frac{1}{{\sqrt {1 - {{\left( {\frac{{0.500c}}{c}} \right)}^2}} }}\\ &= \frac{1}{{\sqrt {1 - {{(0.500)}^2}} }}\\ &= 1.155\end{align}\)
Hence, the relativistic factor is 1.155.
94% of StudySmarter users get better grades.
Sign up for free