Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q13PE

Expert-verified
College Physics (Urone)
Found in: Page 316

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Suppose a \({\rm{900}}\;{\rm{kg}}\)car is on the bridge in Figure \({\rm{9}}{\rm{.34}}\) with its center of mass halfway between the hinges and the cable attachments. (The bridge is supported by the cables and hinges only.) (a) Find the force in the cables. (b) Find the direction and magnitude of the force exerted by the hinges on the bridge.

(a) The force in the cables is \({\rm{13213}}\;{\rm{N}}\).

(b) The force on the hinges is \({\rm{26811}}\;{\rm{N}}\) with \({\rm{67}}{\rm{.8^\circ }}\) approaching the opposite shore, with the bridge.

See the step by step solution

Step by Step Solution

Step 1: Concept

Total torque about the point of rotation which is fixed is zero.

Step 2: Diagram

The distance of the CG from the left hinge is \({{\rm{r}}_{\rm{l}}}{\rm{ = 1}}{\rm{.5}}\;{\rm{m}}\).

The distance to the opposite shore is \({{\rm{l}}_{\rm{r}}}{\rm{ = 9}}\;{\rm{m}}\).

The mass of the bridge is \({\rm{m = 2500}}\;{\rm{kg}}\).

The diagram is shown below:

Step 3: Calculation of the force

  1. The torque by the weight of drawbridge is,

\(\begin{array}{c}{{\rm{\tau }}_{{\rm{db}}}}{\rm{ = W \times }}{{\rm{r}}_{\rm{l}}}\\{\rm{ = 2500 \times 9}}{\rm{.8 \times ( - 1}}{\rm{.5)}}\\{\rm{ = - 36750}}\;{\rm{N \times m}}\end{array}\)

The torque due to the weight of the car is(clockwise),

\(\begin{array}{c}{{\rm{\tau }}_{{\rm{car}}}}{\rm{ = }}{{\rm{W}}_{{\rm{car}}}}{\rm{ \times - }}{{\rm{r}}_{{\rm{car}}}}\\{\rm{ = 900 \times 9}}{\rm{.8 \times ( - 4}}{\rm{.5)}}\\{\rm{ = - 39690}}\;{\rm{N \times m}}\end{array}\)

The torque due to tension on the ropes is,

\(\begin{array}{c}{{\rm{\tau }}_{{\rm{rope}}}}{\rm{ = T \times }}{{\rm{r}}_{{\rm{rope}}}}{\rm{ \times sin40^\circ }}\\{\rm{ = T \times 9 \times sin40^\circ }}\\{\rm{ = 5}}{\rm{.79 T}}\end{array}\)

This torque is anticlockwise.

For equilibrium, the net torque is zero. So,

\(\begin{array}{c}{{\rm{\tau }}_{{\rm{db}}}}{\rm{ + }}{{\rm{\tau }}_{{\rm{car}}}}{\rm{ = }}{{\rm{\tau }}_{{\rm{rope}}}}\\{\rm{ - 36750 + ( - 39690) = 5}}{\rm{.79 T}}\\{\rm{T = }}\frac{{36750 + 39690}}{{5.79}}\\{\rm{T = 13213}}\;{\rm{N}}\end{array}\)

Hence, the force is \({\rm{13213}}\;{\rm{N}}\).

Step 4: Calculation of the force on the hinge

  1. We have the tension from part (a) is \({\rm{T = 13213}}\;{\rm{N}}\).

The horizontal component is,

\(\begin{array}{c}{\rm{Tcos40^\circ }}\\{\rm{ = 13213cos40^\circ }}\\{\rm{ = 10122}}\;{\rm{N}}\end{array}\)

The vertical component is,

\(\begin{array}{c}{\rm{mg + }}{{\rm{m}}_c}{\rm{g - Tsin40^\circ }}\\{\rm{ = (2500 + 900)}} \times {\rm{9}}{\rm{.8 - 13213sin40^\circ }}\\{\rm{ = 24827}}\;{\rm{N}}\end{array}\)

Due to the force in hinge inclined at \({\rm{\theta }}\) with the horizontal, the horizontal component is,

So,

\(\begin{array}{c}{\rm{tan\theta = }}\frac{{{\rm{24827}}}}{{{\rm{10122}}}}\\{\rm{\theta = 67}}{\rm{.8^\circ }}\end{array}\)

The force is,

\(\begin{array}{c}{\rm{F = }}\sqrt {{\rm{10122}}{}^{\rm{2}}{\rm{ + 2482}}{{\rm{7}}^{\rm{2}}}} \\{\rm{ = 26811}}\;{\rm{N}}\end{array}\)

Hence, the force is \({\rm{26811}}\;{\rm{N}}\) with \({\rm{67}}{\rm{.8^\circ }}\)approaching the opposite shore, with the bridge.

Most popular questions for Physics Textbooks

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Physics Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.