Suggested languages for you:

Americas

Europe

Q14 CQ

Expert-verifiedFound in: Page 315

Book edition
1st Edition

Author(s)
Paul Peter Urone

Pages
1272 pages

ISBN
9781938168000

**Explain why the forces in our joints are several times larger than the forces we exert on the outside world with our limbs. Can these forces be even greater than muscle forces?**

The joints in human bodies act as a third-class lever. The mechanical advantage is less than 1.

The action of muscles when an object is placed on human hand palm is depicted as below:

** **

**Human hand as lever**

The arm is represented by EP, Elbow at E, palm at P. The load of weight L is at palm.

The muscles exert a force ${F}_{M}$ upward, at a distance ${l}_{1}$from E. The center of mass of the forearm and the load are at distances ${l}_{2}$and ${l}_{3}$ from E.

Under the equilibrium of forces, we can write,

${F}_{M}={F}_{E}+W+L..\dots \left(1\right)$

Here, *W* is the weight of the fore-arm.

Under the equilibrium of the moments about the point E,

$\begin{array}{l}{F}_{M}{l}_{1}=W{l}_{2}+L{l}_{3}\\ {F}_{M}=W\left(\frac{{I}_{2}}{{l}_{1}}\right)+L\left(\frac{{l}_{3}}{{l}_{1}}\right)........\left(2\right)\end{array}$

We can write from equation (1) that,

${F}_{E}={F}_{M}-\left(W+L\right)\phantom{\rule{0ex}{0ex}}=W\left(\frac{{l}_{2}}{{l}_{1}}\right)+L\left(\frac{{l}_{3}}{{l}_{1}}\right)-\left(W+L\right)\phantom{\rule{0ex}{0ex}}=W\left(\frac{{l}_{2}}{{l}_{1}}-1\right)+L\left(\frac{{l}_{3}}{{l}_{1}}-1\right)\phantom{\rule{0ex}{0ex}}$

As the factors,$\left(\frac{{I}_{2}}{{l}_{1}}-1\right)$ and$\left(\frac{{I}_{3}}{{l}_{1}}-1\right)$ are greater than unity,

${F}_{E}>W+L$

94% of StudySmarter users get better grades.

Sign up for free