Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q14PE

Expert-verified
College Physics (Urone)
Found in: Page 316

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

A sandwich board advertising sign is constructed as shown in Figure \({\rm{9}}{\rm{.35}}\). The sign’s mass is \({\rm{8}}{\rm{.00}}\;{\rm{kg}}\). (a) Calculate the tension in the chain assuming no friction between the legs and the sidewalk. (b) What force is exerted by each side on the hinge?

(a) The tension is \({\rm{21}}{\rm{.6}}\;{\rm{N}}\).

(b) The force exerted by the hinge is \({\rm{21}}{\rm{.6}}\;{\rm{N}}\) and only horizontally.

See the step by step solution

Step by Step Solution

Step 1: Equilibrium of Force

At equilibrium, the total force is zero on a system.

Step 2: Diagram

The diagram is shown below

Fig. 9.35

Step 3: Calculation of the force

  1. The net force is zero in equilibrium. So,

\({{\rm{N}}_{\rm{L}}}{\rm{ + }}{{\rm{N}}_{\rm{r}}}{\rm{ - }}{{\rm{w}}_{\rm{s}}}{\rm{ = 0}}\)

Normal forces should be equal by symmetry. So,

\({{\rm{N}}_{\rm{L}}}{\rm{ = }}{{\rm{N}}_{\rm{r}}}{\rm{ = N}}\)

We write,

\(\begin{array}{c}{\rm{2N - }}{{\rm{w}}_{\rm{s}}}{\rm{ = 0}}\\{\rm{N = }}\frac{{{{\rm{w}}_{\rm{s}}}}}{{\rm{2}}}\\{\rm{N = }}\frac{{{\rm{8 \times 9}}{\rm{.8}}}}{{\rm{2}}}\\{\rm{N = 39}}{\rm{.2}}\;{\rm{N}}\end{array}\)

The tension is calculated as,

\(\begin{array}{c}{\rm{ - T \times 0}}{\rm{.500 - w}}\frac{{{\rm{1}}{\rm{.10}}}}{{\rm{4}}}{\rm{ + N}}\frac{{{\rm{1}}{\rm{.10}}}}{{\rm{2}}}{\rm{ = 0}}\\{\rm{T = }}\frac{{\rm{1}}}{{{\rm{0}}{\rm{.500}}}}\left( {\frac{{{\rm{39}}{\rm{.2 \times 0}}{\rm{.55}}}}{{\rm{2}}}} \right)\\{\rm{T = 21}}{\rm{.6}}\;{\rm{N}}\end{array}\)

Hence, the tension is \({\rm{21}}{\rm{.6}}\;{\rm{N}}\).

Step 4: Calculation of the force

  1. The net force,

\({{\rm{F}}_{\rm{t}}}{\rm{sin\varphi - N - w = 0}}\)

And

\({{\rm{F}}_{\rm{t}}}{\rm{cos\varphi = T}}\)

So,

\(\begin{array}{c}{\rm{sin\varphi = 0}}\\{\rm{\varphi = 0^\circ }}\end{array}\)

\(\) \(\begin{array}{c}{{\rm{F}}_{\rm{t}}}{\rm{cos\varphi = T}}\\{\rm{ = 21}}{\rm{.6}}\;{\rm{N}}\end{array}\)

Hence, the force is \({\rm{21}}{\rm{.6}}\;{\rm{N}}\)and only horizontally.

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Physics Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.