Americas
Europe
Q14PE
Expert-verifiedA sandwich board advertising sign is constructed as shown in Figure \({\rm{9}}{\rm{.35}}\). The sign’s mass is \({\rm{8}}{\rm{.00}}\;{\rm{kg}}\). (a) Calculate the tension in the chain assuming no friction between the legs and the sidewalk. (b) What force is exerted by each side on the hinge?
(a) The tension is \({\rm{21}}{\rm{.6}}\;{\rm{N}}\).
(b) The force exerted by the hinge is \({\rm{21}}{\rm{.6}}\;{\rm{N}}\) and only horizontally.
At equilibrium, the total force is zero on a system.
The diagram is shown below
Fig. 9.35
\({{\rm{N}}_{\rm{L}}}{\rm{ + }}{{\rm{N}}_{\rm{r}}}{\rm{ - }}{{\rm{w}}_{\rm{s}}}{\rm{ = 0}}\)
Normal forces should be equal by symmetry. So,
\({{\rm{N}}_{\rm{L}}}{\rm{ = }}{{\rm{N}}_{\rm{r}}}{\rm{ = N}}\)
We write,
\(\begin{array}{c}{\rm{2N - }}{{\rm{w}}_{\rm{s}}}{\rm{ = 0}}\\{\rm{N = }}\frac{{{{\rm{w}}_{\rm{s}}}}}{{\rm{2}}}\\{\rm{N = }}\frac{{{\rm{8 \times 9}}{\rm{.8}}}}{{\rm{2}}}\\{\rm{N = 39}}{\rm{.2}}\;{\rm{N}}\end{array}\)
The tension is calculated as,
\(\begin{array}{c}{\rm{ - T \times 0}}{\rm{.500 - w}}\frac{{{\rm{1}}{\rm{.10}}}}{{\rm{4}}}{\rm{ + N}}\frac{{{\rm{1}}{\rm{.10}}}}{{\rm{2}}}{\rm{ = 0}}\\{\rm{T = }}\frac{{\rm{1}}}{{{\rm{0}}{\rm{.500}}}}\left( {\frac{{{\rm{39}}{\rm{.2 \times 0}}{\rm{.55}}}}{{\rm{2}}}} \right)\\{\rm{T = 21}}{\rm{.6}}\;{\rm{N}}\end{array}\)
Hence, the tension is \({\rm{21}}{\rm{.6}}\;{\rm{N}}\).
\({{\rm{F}}_{\rm{t}}}{\rm{sin\varphi - N - w = 0}}\)
And
\({{\rm{F}}_{\rm{t}}}{\rm{cos\varphi = T}}\)
So,
\(\begin{array}{c}{\rm{sin\varphi = 0}}\\{\rm{\varphi = 0^\circ }}\end{array}\)
\(\) \(\begin{array}{c}{{\rm{F}}_{\rm{t}}}{\rm{cos\varphi = T}}\\{\rm{ = 21}}{\rm{.6}}\;{\rm{N}}\end{array}\)
Hence, the force is \({\rm{21}}{\rm{.6}}\;{\rm{N}}\)and only horizontally.
94% of StudySmarter users get better grades.
Sign up for free