Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q9PE

Expert-verified
College Physics (Urone)
Found in: Page 121

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Show that the sum of the vectors discussed in Example 3.2 gives the result shown in Figure 3.24.

The location of the dock is \(52.94\;{\rm{m}}\), \({89.9^ \circ }\) north of west.

See the step by step solution

Step by Step Solution

Step 1: Vectors

Vectors are physical quantities that have magnitude and direction.

The two vectors cannot be added by using simple algebraic rules. They can be added by using the triangle law of vector addition.

Step 2: Representation of vectors

The vectors \({\rm{A}}\) and \({\rm{B}}\) are represented as,

Representation of vectors \({\rm{A}}\) and \({\rm{B}}\)

Step 3: Given data:

  • The magnitude of the vector \({\rm{A}}\)is, \(A = 27.5\;{\rm{m}}\).
  • The magnitude of the vector \({\rm{B}}\)is, \(B = 30\;{\rm{m}}\).

Step 4: Horizontal component of vectors

The horizontal component of the vector \({\rm{A}}\) is,

\({A_x} = {\rm{A}}\cos \left( {{{66}^ \circ }} \right)\)

Substitute the values in the above expression, and we get,

\(\begin{aligned}{}{A_x} &= \left( {27.5\;{\rm{m}}} \right) \times \cos \left( {{{66}^ \circ }} \right)\\ &= 11.185\;{\rm{m}}\end{aligned}\)

The horizontal component of the vector \({\rm{B}}\) is,

\({B_x} = {\rm{B}}\cos \left( {{{112}^ \circ }} \right)\)

Substitute the values in the above expression, and we get,

\(\begin{aligned}{}{B_x} &= \left( {30\;{\rm{m}}} \right) \times \cos \left( {{{112}^ \circ }} \right)\\ &= - 11.238\;{\rm{m}}\end{aligned}\)

The resultant of horizontal components vectors \({\rm{A}}\) and \({\rm{B}}\) is,

\({R_x} = {A_x} + {B_x}\)

Substitute the values in the above expression, and we get,

\(\begin{aligned}{}{R_x} &= \left( {11.185\;{\rm{m}}} \right) + \left( { - 11.238\;{\rm{m}}} \right)\\ &= - 0.053\;{\rm{m}}\end{aligned}\)

Step 5: Vertical component of vectors

The vertical component of the vector \({\rm{A}}\) is,

\({A_y} = A\sin \left( {{{66}^ \circ }} \right)\)

Substitute the values in the above expression, and we get,

\(\begin{aligned}{}{A_y} &= \left( {27.5\;{\rm{m}}} \right) \times \sin \left( {{{66}^ \circ }} \right)\\ &= 25.123\;{\rm{m}}\end{aligned}\)

The vertical component of the vector \({\rm{B}}\) is,

\({B_y} = B\sin \left( {{{112}^ \circ }} \right)\)

Substitute the values in the above expression, and we get,

\(\begin{aligned}{}{B_y} &= \left( {30\;{\rm{m}}} \right) \times \sin \left( {{{112}^ \circ }} \right)\\ &= 27.816\;{\rm{m}}\end{aligned}\)

The resultant of vertical components vectors \({\rm{A}}\) and \({\rm{B}}\) is,

\({R_y} = {A_y} + {B_y}\)

Substitute the values in the above expression, and we get,

\(\begin{aligned}{}{R_y} &= \left( {25.123\;{\rm{m}}} \right) + \left( {27.816\;{\rm{m}}} \right)\\ &= 52.939\;{\rm{m}}\end{aligned}\)

Step 6: Resultant vector

The magnitude of the resultant vector is,

\(R = \sqrt {R_x^2 + R_y^2} \)

Substitute the values in the above expression, and we get,

\(\begin{aligned}{}R &= \sqrt {{{\left( { - 0.053\;{\rm{m}}} \right)}^2} + {{\left( {52.939\;{\rm{m}}} \right)}^2}} \\ \approx 52.94\;{\rm{m}}\end{aligned}\)

The direction of the resultant vector is,

\(\theta = {\tan ^{ - 1}}\left( {\frac{{{R_y}}}{{{R_x}}}} \right)\)

Substitute the values in the above expression, and we get,

\(\begin{aligned}{}\theta &= {\tan ^{ - 1}}\left( {\frac{{52.939\;{\rm{m}}}}{{ - 0.053\;{\rm{m}}}}} \right)\\ &= - {89.9^ \circ }\end{aligned}\)

Hence, the location of the dock is \(52.94\;{\rm{m}}\), \({89.9^ \circ }\) north of west.

Most popular questions for Physics Textbooks

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Physics Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.