Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q61PE

Expert-verified
College Physics (Urone)
Found in: Page 264

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

A 75.0-kg cross-country skier is climbing a 3.0º slope at a constant speed of 2.00 m/s and encounters air resistance of 25.0 N. Find his power output for work done against the gravitational force and air resistance.

(b) What average force does he exert backward on the snow to accomplish this?

(c) If he continues to exert this force and to experience the same air resistance when he reaches a level area, how long will it take him to reach a velocity of 10.0 m/s?

(a) The power output is 127 W .

(b) The average force is 63.5 N .

(c) Time taken to reach a velocity of 10 m/s is 9.4 s.

See the step by step solution

Step by Step Solution

Step 1: Relation between power and velocity:

The power is given as,

P=Wt (1.1)

Here, W stands for completed work, and t stands for time.

The work done is given as,

W=Fs (1.2)

Here, F is the force and s is the distance traveled.

From equation (1.1) and (1.2),

P=Fst=Fst=Fv

Since velocity is given as,

v=st

Step 2: Free body diagram

Free body diagram

Here, m is the mass of the person (m = 75.0 kg), g is the acceleration due to gravity g=9.8 m/s2 , θ is the angle of inclination θ=3.0° , and f is the air resistance f=25 N ,F is the net force, and u is the initial velocity (u = 2 m/s).

Step 3: Man’s power output for work done against the gravitational force and air resistance

(a)

The total force acting on the skier is,

F=mgsinθ+f

Here, m is the mass of the person (m = 75.0 kg), g is the acceleration due to gravity g=9.8 m/s2 , θ is the angle of inclination θ=3.0°, and f is the air resistance f=25 N .

Putting all known values,

F=75.0 kg×9.8 m/s2×sin3°+25 N63.5 N

The power output is,

P = Fv

Putting all known values,

P=63.5 N×2.00 m/s=127 W

Therefore, the required power output is 127 W .

Step 4: Average force skier exert backward on snow

(b)

The force skier exert backward on snow is,

F=mgsinθ+f

Here, m is the mass of the person (m = 75.0 kg), g is the acceleration due to gravity g=9.8 m/s2, θis the angle of inclination θ=3.0°, and f is the air resistance f=25 N .

Putting all known values,

F=75.0 kg×9.8 m/s2×sin3°+25 N63.5 N

Therefore, the required average force is 63.5 N .

Step 5: Time taken to reach a velocity

(c)

The average force is,

F=ma

Here, m is the mass of the person (m = 75.0 kg), and a is the acceleration.

The expression for acceleration is,

a=Fm

Putting all known values,

a=63.5 N75 kg=0.85 m/s2

The first equation of motion is,

v = u + at

Here, v is the final velocity (v = 10 m/s), u is the initial velocity (u = 2 m/s), A is the acceleration of the person a=0.85 m/s2 , and T is the time.

The expression for the time is,

t=v-ua

Putting all known values,

t=10 m/s-2 m/s0.85 m/s2=9.4 s

Therefore, the time taken to reach a velocity of 10 m/s is 9.4 s .

Most popular questions for Physics Textbooks

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Physics Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.