Suggested languages for you:

Americas

Europe

Q10P

Expert-verifiedFound in: Page 766

Book edition
10th Edition

Author(s)
David Halliday

Pages
1328 pages

ISBN
9781118230718

**The magnitude J of the current density in a certain lab wire with a circular cross section of radius R = 2.00 mm**

Current through the outer section bounded by radial distance r = 0.900 R and r = R is $2.59\times {10}^{-3}A$ .

a) Current density, $J\left(r\right)=\left(3\times {10}^{8}\right){r}^{2}$

b) Radius of the wire,$R=2mm$

c) Bounded radial distances, $r=0.9R$ and $r=R$

**The current is the rate of flow of charges per unit of time. The current density is the current per unit cross-section area of the rate of flow of charges per unit time per unit area.**

**We can use the relation between the current and the current density to find the current through the outer section bounded between the two radii.**

Formulae:

The equation of the current flowing through a small area, $i=\int \overrightarrow{J}.\overrightarrow{dA}$ ...(i)

Here, i is current, $\overrightarrow{J}$ is current density, $\overrightarrow{dA}$ is the area of cross-section.

The cross-sectional area of the circle, $A={\mathrm{\pi r}}^{2}$ ...(ii)

We have, the given value of the current density as: $J\left(r\right)=\left(3\times {10}^{8}\right){r}^{2}$

The differential cross-sectional area value using equation (ii) can be given as follows:

$dA=2\mathrm{\pi r}\mathrm{dr}$

Substituting these above values in the equation (i), we can get the contained current within the width of the concentric ring assuming is directed along the wire for the radial distance varying from $r=0.900R$ to r = R as follows:

$i=\int \left(3\times {10}^{8}\right){r}^{2}2\mathrm{\pi rdr}\phantom{\rule{0ex}{0ex}}=2\mathrm{\pi}\left(3\times {10}^{8}\right){\int}_{\mathrm{r}=0.900}^{\mathrm{r}=\mathrm{R}}{\mathrm{r}}^{3}\mathrm{dr}\phantom{\rule{0ex}{0ex}}=2\mathrm{\pi}\left(3\times {10}^{8}\right){\left[\frac{{\mathrm{r}}^{4}}{4}\right]}_{0.900\mathrm{R}}^{\mathrm{R}}\phantom{\rule{0ex}{0ex}}=\frac{\mathrm{\pi}\left(3\times {10}^{8}\right)}{2}{\left[{\mathrm{r}}^{4}\right]}_{0.900\mathrm{R}}^{\mathrm{R}}\phantom{\rule{0ex}{0ex}}=\frac{1}{2}\left(3\times {10}^{8}\right)\left[{\mathrm{R}}^{4}-{\left(0.900\mathrm{R}\right)}^{4}\right]\phantom{\rule{0ex}{0ex}}=\frac{1}{2}\left(3\times {10}^{8}\right)\left[{\mathrm{R}}^{4}-0.6561{\mathrm{R}}^{4}\right]\phantom{\rule{0ex}{0ex}}=\frac{1}{2}\left(3\times {10}^{8}\right)\left[0.3439\right]{\mathrm{R}}^{4}\phantom{\rule{0ex}{0ex}}=\frac{1}{2}\left(3\times {10}^{8}\right)\left[0.3439\right]{\left(0.002\right)}^{4}\mathrm{A}\left(\because \mathrm{R}=0.002\mathrm{m}\right)\phantom{\rule{0ex}{0ex}}=2.59\times {10}^{-3}\mathrm{A}$

Hence, the value of the current is $2.59\times {10}^{-3}\mathrm{A}$ .

94% of StudySmarter users get better grades.

Sign up for free