• :00Days
• :00Hours
• :00Mins
• 00Seconds
A new era for learning is coming soon Suggested languages for you:

Europe

Answers without the blur. Sign up and see all textbooks for free! Q15P

Expert-verified Found in: Page 346 ### Fundamentals Of Physics

Book edition 10th Edition
Author(s) David Halliday
Pages 1328 pages
ISBN 9781118230718 # Question: Forces ${\stackrel{\mathbf{\to }}{\mathbf{F}}}_{{\mathbf{1}}}{\mathbf{\text{,}}}{\stackrel{\mathbf{\to }}{\mathbf{F}}}_{{\mathbf{2}}}{\mathbf{}}{\mathbf{\text{and}}}{\stackrel{\mathbf{\to }}{\mathbf{F}}}_{{\mathbf{3}}}$ act on the structure of Fig. 12-33, shown in an overhead view. We wish to put the structure in equilibrium by applying a fourth force, at a point such as P. The fourth force has vector components ${\stackrel{\mathbf{\to }}{\mathbf{F}}}_{h}{\mathbf{}}{\mathbf{\text{and}}}{\stackrel{\mathbf{\to }}{\mathbf{F}}}_{v}$ . We are given that a = 2.0 m, b = 3.0m , c = 1 0 m , ${\stackrel{\mathbf{\to }}{\mathbf{F}}}_{{\mathbf{1}}}{\mathbf{=}}{\mathbf{20}}{\mathbf{}}{\mathbf{\text{N ,}}}{\stackrel{\mathbf{\to }}{\mathbf{F}}}_{{\mathbf{2}}}{\mathbf{=}}{\mathbf{10}}{\mathbf{}}{\mathbf{\text{N and}}}{\stackrel{\mathbf{\to }}{\mathbf{F}}}_{{\mathbf{3}}}{\mathbf{=}}{\mathbf{5}}{\mathbf{.}}{\mathbf{0}}{\mathbf{}}{\mathbf{\text{N}}}$Find (a) Fh , (b) Fv , and (c) d. $a.{F}_{h}=5.0\text{N}\phantom{\rule{0ex}{0ex}}b.{F}_{v}=30\text{N}\phantom{\rule{0ex}{0ex}}c.d=1.3m$

See the step by step solution

## Step 1: Understanding the given information

$\text{a}=2.0\text{m}\phantom{\rule{0ex}{0ex}}\text{b}=3.0\text{m}\phantom{\rule{0ex}{0ex}}\text{c}=1.0\text{m}\phantom{\rule{0ex}{0ex}}{\text{F}}_{1}=20\text{N}\phantom{\rule{0ex}{0ex}}{\text{F}}_{2}=10\text{N}\phantom{\rule{0ex}{0ex}}{F}_{3}=5.0\text{N}\phantom{\rule{0ex}{0ex}}$

## Step 2: Concept and formula used in the given question

By applying the equations of static equilibrium, you can get the equations in terms of unknown forces. By solving these equations, you can find the values of unknown forces and distance. The equations used are given below.

Static Equilibrium conditions:

$\sum {F}_{x}=0\phantom{\rule{0ex}{0ex}}\sum {F}_{y}=0\phantom{\rule{0ex}{0ex}}\sum \tau =0\phantom{\rule{0ex}{0ex}}$

## Step 3: (a) Calculation for the Fh Using the given figure in the problem and applying static equilibrium conditions: $\sum {\text{F}}_{\text{x}}=0\phantom{\rule{0ex}{0ex}}{\text{F}}_{\text{h}}-{\text{F}}_{3}=0······\left(1\right)\phantom{\rule{0ex}{0ex}}\sum {\text{F}}_{\text{y}}=0\phantom{\rule{0ex}{0ex}}{\text{F}}_{\text{v}}-{\text{F}}_{1}-{\text{F}}_{2}=0······\left(2\right)\phantom{\rule{0ex}{0ex}}\sum =0\phantom{\rule{0ex}{0ex}}\left({\text{F}}_{\text{v}}×\text{d}\right)-\left({\text{F}}_{2}×\text{b}\right)-\left({\text{F}}_{3}×\text{a}\right)=0······\left(3\right)\phantom{\rule{0ex}{0ex}}$

From equation (1):

${F}_{h}-5=0$

Hence, ${F}_{h}-5=0$

## Step 4: (b) Calculation for the  Fv

From equation (2):

${F}_{v}-20-10=0$

Hence, ${F}_{v}=30N$

## Step 5: (c) Calculation for the  d

From equation (3):

$\left(30×d\right)-\left(10×3\right)-\left(5×2\right)=0\phantom{\rule{0ex}{0ex}}d=1.3\text{m}\phantom{\rule{0ex}{0ex}}$

Hence, d = 1.3 m

## Recommended explanations on Physics Textbooks

94% of StudySmarter users get better grades. 