• :00Days
• :00Hours
• :00Mins
• 00Seconds
A new era for learning is coming soon

Suggested languages for you:

Americas

Europe

Q12Q

Expert-verified
Found in: Page 116

### Fundamentals Of Physics

Book edition 10th Edition
Author(s) David Halliday
Pages 1328 pages
ISBN 9781118230718

# Figure 5-28 shows four choices for the direction of a force of magnitude F to be applied to a block on an inclined plane. The directions are either horizontal or vertical. (For choice b, the force is not enough to lift the block off the plane.) Rank the choices according to the magnitude of the normal force acting on the block from theplane, greatest first.

The rank of normal force by inclined surface due to the application of force a, b, c, and d from greatest to least is ${\mathrm{N}}_{\mathrm{d}}>{\mathrm{N}}_{\mathrm{c}}>{\mathrm{N}}_{\mathrm{b}}>{\mathrm{N}}_{\mathrm{a}}$ .

See the step by step solution

## Step 1: Given information

Angle is given $\theta =30°$ .

## Step 2: To understand the concept

The problem is based on Newton’s second law of motion which states that the acceleration of an object is dependent on the net force acting upon the object and the mass of the object. Draw free-body diagrams for each force separately and resolve the given force and weight. Using components of forces the net force equation can be written.

Formulae:

${\mathbf{F}}{\mathbf{=}}{\mathbf{m}}{\mathbf{}}{\mathbf{a}}\phantom{\rule{0ex}{0ex}}{\mathbf{W}}{\mathbf{=}}{\mathbf{mg}}$

## Step 3: To rank the normal force by inclined surface due to the application of force a, b, c, and d from greatest to least.

The calculation for normal due to application of force a:

Due to the application of force, there is no motion in the vertical direction, so the net force is zero.

The equation for the net force can be written as,

${\mathrm{F}}_{\mathrm{net}}=0\phantom{\rule{0ex}{0ex}}{\mathrm{N}}_{\mathrm{a}}+\mathrm{a}\mathrm{sin}30°-\mathrm{mgcos}30°=0\phantom{\rule{0ex}{0ex}}{\mathrm{N}}_{\mathrm{a}}=\mathrm{mgcos}30°-\mathrm{asin}30°\phantom{\rule{0ex}{0ex}}{\mathrm{N}}_{\mathrm{a}}=0.866\mathrm{mg}-0.5\mathrm{a}\left(1\right)\phantom{\rule{0ex}{0ex}}\mathrm{This}\mathrm{is}\mathrm{the}\mathrm{normal}\mathrm{force}\mathrm{by}\mathrm{incline}\mathrm{due}\mathrm{to}\mathrm{the}\mathrm{application}\mathrm{of}\mathrm{force}\mathrm{a}.$

The calculation for normal due to application of force b:

${\mathrm{F}}_{\mathrm{net}}=0\phantom{\rule{0ex}{0ex}}{\mathrm{N}}_{\mathrm{b}}+\mathrm{b}\mathrm{cos}30°-\mathrm{mgcos}30°=0\phantom{\rule{0ex}{0ex}}{\mathrm{N}}_{\mathrm{b}}=\mathrm{mgcos}30°-\mathrm{asin}30°\phantom{\rule{0ex}{0ex}}{\mathrm{N}}_{\mathrm{b}}=0.866\mathrm{mg}-0.866\mathrm{b}\left(2\right)\phantom{\rule{0ex}{0ex}}\mathrm{This}\mathrm{is}\mathrm{the}\mathrm{normal}\mathrm{force}\mathrm{by}\mathrm{incline}\mathrm{due}\mathrm{to}\mathrm{the}\mathrm{application}\mathrm{of}\mathrm{force}\mathrm{b}.$

The calculation for normal due to application of force c:

Similarly, the net force equation for force c,

${\mathrm{F}}_{\mathrm{net}}=0\phantom{\rule{0ex}{0ex}}{\mathrm{N}}_{\mathrm{c}}+\mathrm{c}\mathrm{cos}30°-\mathrm{mgcos}30°=0\phantom{\rule{0ex}{0ex}}{\mathrm{N}}_{\mathrm{c}}=\mathrm{mgcos}30°-c\mathrm{sin}30°\phantom{\rule{0ex}{0ex}}{\mathrm{N}}_{\mathrm{c}}=0.866\mathrm{mg}-0.5\mathrm{c}\left(3\right)\phantom{\rule{0ex}{0ex}}\mathrm{This}\mathrm{is}\mathrm{the}\mathrm{normal}\mathrm{force}\mathrm{by}\mathrm{incline}\mathrm{due}\mathrm{to}\mathrm{the}\mathrm{application}\mathrm{of}\mathrm{force}\mathrm{c}.$

The calculation for normal due to application of force d:

Similarly, the net force equation for force d,

${\mathrm{F}}_{\mathrm{net}}=0\phantom{\rule{0ex}{0ex}}{\mathrm{N}}_{\mathrm{d}}+\mathrm{d}\mathrm{cos}30°-\mathrm{mgcos}30°=0\phantom{\rule{0ex}{0ex}}{\mathrm{N}}_{\mathrm{d}}=\mathrm{mgcos}30°-d\mathrm{sin}30°\phantom{\rule{0ex}{0ex}}{\mathrm{N}}_{\mathrm{d}}=0.866\mathrm{mg}+0.866\mathrm{d}\left(4\right)\phantom{\rule{0ex}{0ex}}\mathrm{This}\mathrm{is}\mathrm{the}\mathrm{normal}\mathrm{force}\mathrm{by}\mathrm{incline}\mathrm{due}\mathrm{to}\mathrm{the}\mathrm{application}\mathrm{of}\mathrm{force}\mathrm{d}.$

From equations (1), (2), (3), and (4) we get,

Forces a, b, c, and d have the same magnitude then the increasing order of normal forces is ${\mathrm{N}}_{\mathrm{d}}>{\mathrm{N}}_{\mathrm{c}}>{\mathrm{N}}_{\mathrm{b}}>{\mathrm{N}}_{\mathrm{a}}$ .

## Recommended explanations on Physics Textbooks

94% of StudySmarter users get better grades.