Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q12P

Expert-verified
Fundamentals Of Physics
Found in: Page 896

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

In Figure, a wire loop of lengths L = 40.0 cm and W = 25.0 cm lies in a magnetic field B .(a)What is the magnitude ε if B=(4.00×10-2Tm)yk^?(b)What is the direction (clockwise or counterclockwise—or “none” if 0) of the emf induced in the loop if B=(4.00×10-2Tm)yk^?(c)What is the ε if B=(6.00×10-2Ts)tk^ (d)what is the direction if B=(6.00×10-2Ts)tk^ (e)What is the ε if B=(8.00×10-2Tm.s)ytk^ (f)What is the direction if B=(6.00×10-2Ts)tk^(g)What is the ε if B=(3.00×10-2Tm.s)xtk^ (h)What is the direction if B=(3.00×10-2Tm.s)xtk^(i)What is the if B=(5.00×10-2Tm.s)ytk^(j)What is the direction if B=(5.00×10-2Tm.s)ytk^

  1. Magnitude of emf induced ε=0.
  2. Direction of the emf is none.
  3. Magnitude of emf induced ε=6 mV.
  4. Direction of the emf is clockwise.
  5. Magnitude of emf induced ε=1 mV.
  6. Direction of the emf is clockwise.
  7. Magnitude of emf induced ε=0.
  8. Direction of the emf is none.
  9. Magnitude of emf induced ε=0.
  10. Direction of the emf is none.
See the step by step solution

Step by Step Solution

Step 1: Given

  1. Length of loop, L = 40 cm = 0.4 m
  2. Width of the loop, w = 25.0 cm=0.25 m

Step 2: Determining the concept

By using the concept of the magnetic flux, Faraday’s law and Lenz’s law, find the magnitude and the direction of the induced emf in all the cases.

Faraday's law of electromagnetic induction states, Whenever a conductor is

placed in a varying magnetic field, an electromotive force is induced in it.

Lenz's law states that the current induced in a circuit due to a change in a magnetic field is directed to oppose the change in flux and to exert a mechanical force which opposes the motion.

Formulae are as follow:

  1. Faraday's law ε=dφdt
  2. Magnetic flux φ=ϕBdA

Where, 𝜀 is emf, dt is time, Φis magnetic flux, B is magnetic field, A is area.

Step 3: (a) Determining the magnitude of emf induced ε

The magnetic flux passing through the coil is given by,

φ=ϕB .dA=ϕB dAcosθφ=BAcosθ

The emf induced in coil is given by,

ε=-dφdtε=-ddtBAcosθ.........................................................(1)ε=BAsinθ

Now, for the rectangular coil,

A=0.4×0.25A=0.1m2ε=0.1B sinθ....................................................................(2)

For B=4×10-2T/m)yk^

As the unit vector k^ , it is along z axis and it is perpendicular to the coil. But it is not changing with time. Hence, from equation 1,

ε=-ddtBAcosθε=0

Hence, the emf induced in the coil is zero.

Step 4: (b) Determining the direction of the emf, (clockwise or anticlockwise or none.)

From a),

Hence, the direction of the emf is none.

Step 5: (c) Determining the magnitude of emf induced

For B=6×10-2T/s)tk^

It is perpendicular to the coil and changes with time. From equation 2,

ε=0.1Bsinθε=0.1×6×10-2sin90ε=0.1×6×10-2×1ε=0.1×6×10-2Vε=6×10-3Vε=6 mV

Hence, emf induced in the loop will be 6 mV.

Step 6: (d) Determining the direction of the emf, (clockwise or anticlockwise or none.)

Since, the magnetic field is directed into the page,

Hence, the direction of the induced emf is clockwise.

Step 7: (e) Determining the magnitude of emf induced ε

For B=8×10-2T/m.s)ytk^,

which is in the direction of y axis, that is, along the width of the coil.

φ=ϕB.dAφ=ϕ8×10-2yt×dl×w

w is along x axis.

φ=l×8×10-2t0Wy dyφ=0.4×8×10-2t×w22

φ=0.4×8×10-2×t×0.2522φ=0.1t×10-2

The emf induced can be calculated as,

ε=dtε=ddt0.1t×10-2ε=1×10-3Vε=1 mV

Hence, the emf induced in the coil is 1 mV.

Step 8: (f) Determining the direction of the emf, (clockwise or anticlockwise or none.)

From e),

Hence, the direction of the induced emf will be clockwise.

Step 9: (g) Determining the magnitude of emf induced ε

For B=3×10-2T/m.s)xtj^ , the magnetic field is directed along the y axis i.e. parallel to the coil.

The flux through the coil i.e. φ=0

ε=0

Hence, the emf induced in the coil is zero.

Step 10: (h) Determining the direction of the emf, (clockwise or anticlockwise or none.)

From g),

Hence, the direction of emf will be none.

 Step 11: (i) Determining the magnitude of emf induced ε

ForB=5×10-2T/m.s)yti^ , the magnetic field is directed along the x axis i.e. parallel to the coil.

The flux through the coil i.e. φ=0

ε=0

Hence, the emf induced in the coil is zero.

Step 12: (j) Determining the direction of the emf, (clockwise or anticlockwise or none.)

From i),

Hence, the direction of emf will be none.

Therefore, by using the concept of the magnetic flux, Faraday’s law and Lenz’s law, find the magnitude and the direction of the induced emf in all the cases.

Most popular questions for Physics Textbooks

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Physics Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.