• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Chapter 1: Measurement

Fundamentals Of Physics
Pages: 1 - 12

Answers without the blur.

Just sign up for free and you're in.


170 Questions for Chapter 1: Measurement

  1. In Fig. 13-57, identical blocks with identical masses m=2.00 kghang from strings of different lengths on a balance at Earth’s surface.The strings have negligible mass and differ in length by h=5.00 cm. Assume Earth is spherical with a uniform density r=5.5. g/cm3. What is the difference in the weight of the blocks due to one being closer to Earth than the other?

    Found on Page 1
  2. Figure 7-37 gives spring force Fxversus position x for the spring–block arrangement of Fig . 7-10 . The scale is set byFx=160.0N. We release the block atx=12cm. How much work does the spring do on the block when the block moves from xi=+8.0cm to (a) x= +5.0 cm, (b) x=-5.0 cm, (c) x=-8.0 cm, and (d) x=-10.0 cm ?

    Found on Page 1
  3. The block in Fig. 7-10a lies on a horizontal frictionless surface, and the spring constant is 50N/m. Initially, the spring is at its relaxed length and the block is stationary at position x=0. Then an applied force with a constant magnitude of 3.0 N pulls the block in the positive direction of the x axis, stretching the spring until the block stops. When that stopping point is reached, what are (a) the position of the block, (b) the work that has been done on the block by the applied force, and (c) the work that has been done on the block by the spring force? During the block’s displacement, what are (d) the block’s position when its kinetic energy is maximum and (e) the value of that maximum kinetic energy?

    Found on Page 1
  4. A 10 kg brick moves along an x axis. Its acceleration as a function of its position is shown in Fig.7-38. The scale of the figure’s vertical axis is set by as 20.0 m/s2. What is the net work performed on the brick by the force causing the acceleration as the brick moves from x=0tox=8.0m?

    Found on Page 1
  5. The force on a particle is directed along an x axis and given byF=F0(xx0-1). Find the work done by the force in moving the particle from x=0tox=x0 by (a) plotting F(x) and measuring the work from the graph and (b) integratingF(x).

    Found on Page 1
  6. A projectile is shot directly away from Earth’s surface.Neglect the rotation of Earth. What multiple of Earth’s radius gives the radial distance a projectile reaches if (a) its initial speed is 0.500 of the escape speed from Earth and(b) its initial kinetic energy is 0.500 of the kinetic energy required to escape Earth?(c)What is the least initial mechanical energy required at launch if the projectile is to escape Earth?

    Found on Page 1
  7. A can of sardines is made to move along an x axis from x=0.25m tox=1.25m by a force with a magnitude given byF=exp(-4x2) with x in meters and Fin newtons. (Here exp is the exponential function.) How much work is done on the can by the force?

    Found on Page 1
  8. A single force acts on a 3.0 kgparticle-like object whose position is given byx=3.0t-4.0t2+1.0t3, with x in meters and t in seconds. Find the work done by the force fromt=0tot=4.0s.

    Found on Page 1
  9. Figure 7-41shows a cord attached to a cart that can slide along a frictionless horizontal rail aligned along an x axis. The left end of the cord is pulled over a pulley, of negligible mass and friction and at cord heighth=1.20m, so the cart slides fromx1=3.00mtox2=1.00m. During the move, the tension in the cord is a constant25.0N. What is the change in the kinetic energy of the cart during the move?

    Found on Page 1
  10. Question: Suppose that the radius of the Sun was increased to 5.9010 12m (the average radius of the orbit of Pluto), that the density of this expanded Sun were uniform, and that the planets revolved within this tenuous object. (a) Calculate Earth’s orbital speed in this new configuration. (b) What is the ratio of the orbital speed calculated in (a) to Earth’s present orbital speed of 29.8 km/s? Assume that the radius of Earth’s orbit remains unchanged. (c) What would be Earth’s new period of revolution? (The Sun’s mass remains unchanged).

    Found on Page 1

Related Physics Textbooks with Solutions

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.