• :00Days
• :00Hours
• :00Mins
• 00Seconds
A new era for learning is coming soon Suggested languages for you:

Europe

Answers without the blur. Sign up and see all textbooks for free! 35P

Expert-verified Found in: Page 1 ### Fundamentals Of Physics

Book edition 10th Edition
Author(s) David Halliday
Pages 1328 pages
ISBN 9781118230718 # The force on a particle is directed along an x axis and given by ${\mathbf{F}}{\mathbf{=}}{{\mathbf{F}}}_{{\mathbf{0}}}\left(\frac{x}{{x}_{0}}-1\right)$. Find the work done by the force in moving the particle from ${\mathbf{x}}{\mathbf{=}}{\mathbf{0}}{\mathbf{}}{\mathbf{to}}{\mathbf{}}{\mathbf{x}}{\mathbf{=}}{{\mathbf{x}}}_{{\mathbf{0}}}$ by (a) plotting ${\mathbf{F}}\left(x\right)$ and measuring the work from the graph and (b) integrating ${\mathbf{F}}\left(x\right)$.

1. The net work done by the given force using graph is 0
2. The net work done by the given force using integration is 0
See the step by step solution

## Step 1: Given

The given force function is,

$\mathrm{F}={\mathrm{F}}_{0}\left(\frac{\mathrm{x}}{{\mathrm{x}}_{0}}-1\right)$

The particle moves from $\mathrm{x}=0\mathrm{to}\mathrm{x}=2{\mathrm{x}}_{0}$

## Step 2: Understanding concept of calculating work done

We can use the equation of work for the integration method. For the graph method, the work done is equal to the area under the curve in the graph.

Formula:

${\mathbf{W}}{\mathbf{=}}{{\mathbf{\int }}}_{{\mathbf{x}}_{\mathbf{i}}}^{{\mathbf{x}}_{\mathbf{f}}}{\mathbf{F}}\left(x\right){\mathbf{d}}{\mathbf{x}}\phantom{\rule{0ex}{0ex}}{\mathbf{A}}{\mathbf{=}}\frac{\mathbf{1}}{\mathbf{2}}{\mathbf{×}}{\mathbf{base}}{\mathbf{×}}{\mathbf{height}}$

## Step 3: (a) Plot  and calculate the work done from it

The given function of force is,

$\mathrm{F}={\mathrm{F}}_{0}\left(\frac{\mathrm{x}}{{\mathrm{x}}_{0}}-1\right)$

So,

 For x=0 F = -F0 For x=x F = 0 For x=x F = F0

We can plot the graph of F(x) using these points as The work done, from the graph, is simply the area under the curve.

In the above graph,we see that the area under the curve from $\mathrm{x}=0\mathrm{to}\mathrm{x}=2{\mathrm{x}}_{0}$ is equal to the area under the curve for $\mathrm{x}=0\mathrm{to}\mathrm{x}=2{\mathrm{x}}_{0}$ and both are opposite to each other

So, the work done from the graph is $\mathrm{W}=0\mathrm{J}$

## Step 4: (b) Calculate the work done by using integration method

Using the integration method, we have

$\mathrm{W}={\int }_{{\mathrm{x}}_{\mathrm{i}}}^{{\mathrm{x}}_{\mathrm{f}}}\mathrm{F}\left(\mathrm{x}\right)d\mathrm{x}\phantom{\rule{0ex}{0ex}}\mathrm{W}={\int }_{0}^{2{\mathrm{x}}_{0}}{\mathrm{F}}_{0}\left(\frac{\mathrm{x}}{{\mathrm{x}}_{0}}-1\right)d\mathrm{x}\phantom{\rule{0ex}{0ex}}\mathrm{W}={\mathrm{F}}_{0}{\left(\frac{{\mathrm{x}}^{2}}{2{\mathrm{x}}_{0}}-\mathrm{x}\right)}_{0}^{2{\mathrm{x}}_{0}}\phantom{\rule{0ex}{0ex}}\mathrm{W}=2{\mathrm{x}}_{0}-2{\mathrm{x}}_{0}\phantom{\rule{0ex}{0ex}}\mathrm{W}=0\mathrm{J}$

Therefore, work done is 0 J. ### Want to see more solutions like these? 