Americas
Europe
Q104P
Expert-verifiedQuestion: A proton moves along the axis according to the equation x = 50t + 10t2 , where x is in meters and t is in seconds. Calculate (a) the average velocity of the proton during the first 3.0 s of its motion, (b) the instantaneous velocity of the proton at t = 3.0 s, and (c) the instantaneous acceleration of the proton at t = 3.0 s . (d) Graph x versus t and indicate how the answer to (a) can be obtained from the plot. (e) Indicate the answer to (b) on the graph. (f) Plot v versus t and indicate on it the answer to (c).
The equation for the motion of the proton is,
Average velocity is the ratio of total displacement to the total time interval. Instantaneous velocity is the velocity of a moving object at a specific moment.
The expression for the average velocity is given as follows:
… (i)
Here, is the displacement and is the time duration.
The expression for the instantaneous velocity is given as follows:
… (ii)
The expression for the instantaneous acceleration is given as follows:
… (iii)
Position of the proton at is,
localid="1660821352042"
Position of the proton at is,
Using equation (i), the average velocity is calculated as follows:
Thus, the average velocity of the proton is .
Using equation (ii), the instantaneous velocity is,
The instantaneous velocity at is,
role="math" localid="1650539082653"
Thus, the instantaneous velocity at time is .
Using equation (iii), the instantaneous acceleration is,
Thus, the instantaneous acceleration at is .
The graph x vs t is plotted below.
From the graph,
The positions at 3.0 s and 0 s are,
So, the average velocity is,
The instantaneous velocity at is the slope of the triangle drawn at that point in the above graph and it is,
Thus, the instantaneous velocity at 3.0 s is 110 m/s.
The graph of vs is as below,
From the graph, the instantaneous acceleration is the slope of the graph
Thus, the instantaneous acceleration from the graph is .
94% of StudySmarter users get better grades.
Sign up for free